
Recent Posts
Tags
 CayleyHamilton Theorem
 characters
 Chinese remainder theorem
 Compression
 Diophantine approximation
 Dirichlet's theorem
 Dirichlet's approximation theorem
 Dirichlet's unit theorem
 Domino
 Dynamics
 eigenvalues
 Entropy
 Euclid
 Fourier transform
 gaussian integers
 Generic Matrix
 Geometry
 Geometry of numbers
 Homogeneous spaces
 Hyperbolic space
 Klein group
 lattice
 Lattices
 Linearity testing
 mediant
 Minkowski's Theorem
 mobius
 Number Theory
 Peg Solitaire
 Pell's equations
 poinare disk
 prime numbers
 Pythagoras
 radar
 random walk
 self similar sets
 shortest vector problem
 Sierpinski carpet
 Sierpinski triangle
 SL_2(Z)
 stochastic matrices
 Weak Law of Large Numbers
Archives
Tag Archives: Pell’s equations
The rise of algebraic extensions
In the post about number theory and lattices, we tried to determine when is the Euclidean distance in is actually a Euclidean norm and we were led to study the embeddings of rings such as as lattices in . As mentioned … Continue reading