
Nonnegative and Positive Diophantine Solutions
John Burkardt
22 May 2020

We suppose we are given a linear Diophantine equation in n variables:

n∑
i=1

aixi = b

where the coefficients ai and the right hand side b are assumed to be strictly positive integers. It is desired
to determine all solution vectors x which are integers, and either nonnegative, or strictly positive. Under
the assumptions on a and b, there can no more than finitely many nonnegative or strictly positive integer
solutions. We use k to represent the number of solutions of a given problem.

This text describes a pair of MATLAB functions, with the signatures

x = diophantine_nd_nonnegative(a,b)

x = diophantine_nd_positive(a,b)

which accept the coefficient n-vector a and right hand side b of a Diophantine equation, and return the set
of solutions in an n× k array x.

We regard the nonnegative solution procedure as the more fundamental of the two. If we have such a
procedure, we can construct a corresponding procedure for all strictly positive solutions. A brute force
approach would generate all nonnegative solutions and then discard those that are not strictly positive.
But a more satisfactory approach defines an auxilliary problem to be treated by the nonnegative procedure,
whose result can be transformed into a solution of the strictly positive problem.

Thus, assume for a moment that we have a nonnegative solver. Say we are given the information for a
Diophantine equation, but we wish to find only the strictly positive solutions. In that case, from the data a
and b, we can define a new right hand side β, and use the nonnegative solution procedure to find solution
vectors χ, from which the solution set x of the original problem can be recovered.

The following algorithm suggests how this is done:

Algorithm 1 Solver for positive solutions of Diophantine equation

procedure diophantine nd positive(a, b)
n← length of a
β ← b−

∑n
i=1 ai

if β < 0 then
x← ∅

else
χ← diophantine nd nonnegative(a, β).
for 1 ≤ j ≤ n do

xj ← χj + 1
end for

end if
return x

end procedure

Now we can concentrate on the algorithm diophantine nd nonnegative() which seeks nonnegative solutions
to a Diophantine problem. Given the data a and b, we plan to construct each possible solution vector

1



x one component at a time. The step counter j starts at 1. We start by evaluating the “surplus”, r =
b −

∑
i = 1j−1aixj . On step j, we assume we have already set components 1 through j. If j < n, then we

can increment j and choose xj to be any value between 0 and b r
aj
c, where for any real value r, the floor()

function, brc returns the greatest integer less than or equal to r. Here, we take the greedy choice xj = b r
aj
c,

and we are ready for the next step.

However, if j = n, we have constructed a complete proposed solution. If the solution satisfies the equation,
we add it to our list. In any case, we then search our current solution x for the largest previous index k for
which xk was nonzero. If we find such an index, we decrement xk by 1, set j = k, and restart the algorithm
from that index to consider the next possible solution. But if no such index k exists, then we exhausted our
options and the search terminates. An outline of this algorithm follows:

Algorithm 2 Solver for nonnegative solutions of Diophantine equation

procedure diophantine nd nonnegative(a, b)
n← length of a
x← ∅
j ← 0
r ← 0
while true do . Construct a vector Y that is a possible solution.

r ← b−
∑j

i=1 ai yi
if j < n then . We have a partial vector Y. Get next component.

j ← j + 1
y(j)← b r

a(j)c . Largest possible y(j), given y(1:j-1)

else . We have a full vector Y.
if r == 0 then . Is Y a solution?

x← x ∪ y
end if
while 0 < j do . Find last nonzero Y entry, decrease by 1.

if 0 < y(j) then
y(j)← y(j)− 1
break

end if
j ← j − 1

end while
if j == 0 then

return x
end if

end if
end while

end procedure

There are several ways to improve this procedure. At an early step j < n, if the residual r is zero, the
remaining entries of y can be set to zero immediately and a solution accepted. Moreover, if at any step j,
the residual is not divisible by the greatest common divisor of the coeffients indexed from j + 1 through n,
the partial proposed solution is untenable; the last nonzero entry in y should be decremented and the search
restarted from that index. For the moment, these efficiencies have not been implemented.

As a small demonstration of this procedure, consider the calculation of the nonnegative solutions of

12x1 + 9x2 + 7x3 = 30

2



The following diagram suggests the progress of the algorithm. The first line suggests that algorithm begins
by setting y1 to its maximum value of 2. It then produces the partial vector (2,0) and the full vector (2,0,0),
which is rejected because it does not satisfy the equation. On the second line, we see that the algorithm
steps back to the last nonzero component of y, namely y1, reduces it by 1, and extends the vector to (1,2)
and then (1,2,0). This vector satisfies the equation and so is accepted as the first solution. In the third line,
we see that the algorithm steps back to the last nonzero component of y, namely y2, decrements it to 1, and
generates the vector (1,1,1), which is rejected. Subsequent lines show the orderly generation of tentative
vectors, and the discovery of a second solution.

2; 2 0; 2 0 0

1; 1 2; 1 2 0 Solution #1

1 1; 1 1 1

1 1 0

1 0; 1 0 2

1 0 1

1 0 0

0; 0 3; 0 3 0

0 2; 0 2 1

0 2 0

0 1; 0 1 3 Solution #2

0 1 2

0 1 1

0 1 0

0 0; 0 0 4

0 0 3

0 0 2

0 0 1

0 0 0

As a result of the way that the possibilities are examined, the accepted solutions are automatically accumu-
lated in a sorted order. If you regard each solution as the digits of a number, they show up in descending
numeric order. For example, the k = 10 strictly positive solutions of 2x1 + 3x2 + 5x3 + 6x4 + 7x5 = 35 are
returned in a 5 × 10 array x. To illustrate the ordering, we print the transpose of x, so that each solution
appears as a row, and can be read as a 5 digit number:

7,1,1,1,1

4,3,1,1,1

4,1,1,2,1

3,2,2,1,1

2,2,1,1,2

2,1,3,1,1

1,5,1,1,1

1,3,1,2,1

1,1,2,1,2

1,1,1,3,1

Copies of the two MATLAB procedures are available from the web page

http://people.sc.fsu.edu/~jburkardt/m_src/diophantine_nd/diophantine_nd.html,

which also provides a procedure for prechecking the values of a and b, and points to a related directory
containing some tests, and the text of this document.

3


