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 Generation of Finite Difference Formulas

 on Arbitrarily Spaced Grids

 By Bengt Fornberg

 Abstract. Simple recursions are derived for calculating the weights in compact finite
 difference formulas for any order of derivative and to any order of accuracy on one-
 dimensional grids with arbitrary spacing. Tables are included for some special cases (of
 equispaced grids).

 1. Introduction. Previously published methods to generate finite difference

 weights (e.g., references [1]-[5]) have been of considerable complexity and often
 been limited to derivatives of low order on equidistantly spaced grids. The most

 ambitious attempt to tabulate weights for many orders of derivatives and to high

 orders of accuracy appears to be the work by Keller and Pereyra [4]. However,
 their algorithms (limited to equispaced grids) were very involved, and the resulting
 tables contain both isolated and systematic errors.

 In the present study we describe two simple recursion relations which give the

 weights for any order of derivative (including the 0th derivative, corresponding
 to interpolation), approximated to any order of accuracy on an arbitrary grid in
 one dimension. Since, in general, only four arithmetic operations are needed to

 determine each weight, the main anticipated application of the present method is

 to dynamically changing grids. However, the method is also well suited to generate
 tables of weights. Such tables (in the special case of equispaced grids, up to the 4th

 derivative and up to 9 weights) are included in the cases of one-sided and centered

 approximations at a grid point and at a 'half-way point' between grid points.

 2. Notation, Algorithm. Given M > 0, the order of the highest derivative we

 wish to approximate, and a set of N + 1 grid points (at x-coordinates ao, . ,N;
 N > 0), the problem is to find all the weights such that the approximations

 dmft n
 dzmf e11 E bnL} f (avz) I m = O. 1 . .., M; n-m,m +1, . .., N.
 dx =Xo IJ=O

 become of optimal formal order of accuracy (in general of order n - m + 1, although
 it can be higher in special cases). The following algorithm achieves this:
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 700 BENGT FORNBERG

 Enter M, N, Xo, cO,& 1,i 2,.. aN

 for n:= 1 to N do

 c2 := 1

 for v := 0 to n - 1 do

 c3 :an- av
 c2 c2 c3

 if n < M then 6nn-,,v := 0
 for m := 0 to min(n, M) do

 6nV= ((an - XO)6nm, - m6n`Lj1v,)/c3
 next m

 next v

 for m := 0 to min(n, M) do
 6mn := (M n-i ( an-1 - )6n'1,n-)
 nfl c2 "n-l,n-1 k-f- O-n1n1

 next m

 cl := c2

 next n

 Notes. 1. If the array 6m initially is zero, the statement "if n < M then

 6nn-,o := f0" can be omitted.
 2. In the case of m = 0 (corresponding to interpolation formulas), expressions

 of the form 'zero*(undefined number)' occur. The result is assumed to be zero.

 3. The order in which the a., (all distinct) are given is significant (since the
 weights corresponding to all leading subsets of the &a,,'s are calculated). There is
 no restriction on xo coinciding with any ao.

 3. Derivation of the Algorithm. For simplicity, assume we seek to approx-

 imate the derivatives at the point xo = 0. Let {& o, ai... , j} be distinct real
 numbers and denote

 n

 (3.1) Jn (X) =1 rX (- ak)
 k=O

 The polynomial

 (3.2) Fnv(x) Wn(c W)(x- &L,)
 is the one of minimal degree which takes the value 1 at x = &al and 0 at x = ak,
 0 < k < n, k :A v. For an arbitrary function f(x) and nodes x = a,, Lagrange's
 interpolation polynomial becomes

 n

 (3.3) p(x) F
 V=0

 The desired weights express how the values of [dmp(x)/dxm]x0 vary with changes
 in f(av). Since only one term in p(x) is influenced by changes in each f(av), we
 find

 (3.4) =
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 GENERATION OF FINITE DIFFERENCE FORMULAS 701

 Therefore, the nth degree polynomial Fn,,(x) can also be expressed as

 m=0m (3.5) Fn v (X) = , E Xm!

 From (3.2) follow (noting that w(x) = (x - an)wnl(x) implies w (x) = (x -
 an )n- 1 (X) + Win- 1 (X) )

 (3.6) Fn,(x) = - Fan 1,>v(X)
 av- afl

 and

 (3.7) Fnn(X) = 'I(n ) = (2(ani) (X -an-1)Fn-1,n-1(x) (n > 1).

 By substituting the expansion (3.5) into (3.6) and (3.7), and by equating powers of
 x, the desired recursion relations between the weights are obtained:

 (3.8) 3m - 1 g - m3-1,)

 and

 (3.9) n- Wl 2(n n-it) (m6ml-1 A

 The relation

 (3.10) S { 0,

 could be used instead of (3.9) to obtain 6nmn. However, this would increase the
 operation count and might also cause a growth of errors in the case of floating-
 point arithmetic.

 4. Description of the Tables. Special cases which commonly occur are cen-
 tered and one-sided approximations on equidistant grids. The particular choices of
 a,, used for Tables 1-4 correspond to grid spacings Ax = 1. For other values of
 Ax, these coefficients should be divided by (Ax)m (where m, as before, is the order
 of the derivative).

This content downloaded from 
� � � � � � � � � � � � 136.142.159.28 on Sun, 08 Sep 2024 14:41:35 UTC� � � � � � � � � � � � �  

All use subject to https://about.jstor.org/terms



 702 BENGT FORNBERG

 TABLE 1

 Some weights for centered approximations at a grid point (generated by setting M =

 4, N = 8, xo = 0 and al, = {O, 1,-1, 2,-2,3,-3,4,-4}).

 d
 e

 O r 0

 d a r a Approximations at x = 0;
 e a e c
 r v r u x-coordinates at nodes:

 ov
 f e f y -4 -3 -2 -1 0 1 2 3 4

 0 00 1

 4212 - 0 2 280 0

 1 -2 2 -1

 4 ~~~ ~~12 43 3 12

 1 6 -1 3 3 3 -3 1 6 0~~~~

 -1 -4 1 -4 4 -1 4 -1 8 0 - ~~

 2850 315 5 5 72 5 5 315 280

 2 1 -2 1

 4 -1 4 -5 4 -1

 1 -3 3 -49 3 -3 1

 6 90 3 2 20 90
 2401 8 -1 8 -205 8 -1 8 -1

 8 560 315 5 5 72 5 5 315 560

 2 1 1 6 -1 1

 4 4 6 2- 13 0 13 -1 8 ~~~8 8 1 8

 6 7 -169 61 0 -61 169 -3 7
 240 10 120 15 30 120 10 240

 2 1 -4 6 -4 1

 4 4 -1 2 -13 28 -13 2 -1 6 2 3 -2 2 6

 6 7 -2 169 -122 91 -122 169 -2 7 6 240 5 60 15 8 15 60 5 240

This content downloaded from 
� � � � � � � � � � � � 136.142.159.28 on Sun, 08 Sep 2024 14:41:35 UTC� � � � � � � � � � � � �  

All use subject to https://about.jstor.org/terms



 GENERATION OF FINITE DIFFERENCE FORMULAS 703

 TABLE 2

 Some weights for centered approximations at a 'half-way' point (generated by setting

 M = 4, N = 7, x0 = 0 and ao, = {1/2, -1/2, 3/2, -3/2, 5/2, -5/2,7/2, -7/2}).

 d
 e

 d i d a Approximations at x = 0;
 e a e c
 r t r u x-coordinates at nodes:

 f e f y -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2

 2 1 1
 2 2

 4 -1 9 9 -1
 16 16 16 16

 3 -25 75 75 -25 3
 o 6 256 256 128 128 256 256

 8 -5 49 -245 1225 1225 -245 49 -5
 8 2048 2048 2048 2048 2048 2048 2048 2048

 2 -1 1

 4 1 -9 9 -1
 24 8 8 24

 1 6 -3 25 -75 75 -25 3 660 384 64 64 384 640

 8 5 -49 245 -1225 1225 -245 49 -5
 7168 5120 3072 1024 1024 3072 5120 7168

 2 1 -1 -1 1
 2 2 2 2

 2 4 -5 13 -17 -17 13 5
 48 16 24 24 16 48

 259 -499 1299 -1891 -1891 1299 -499 259
 6 11520 2304 1280 2304 2304 1280 2304 11520

 2 -1 3 -3 1

 3 4 1 -13 17 -17 13 -1
 8 8 4 4 8 8

 -37 499 -1299 1891 -1891 1299 -499 37
 6 1920 1920 640 384 384 640 1920 1920

 2 1 3 1 1 1
 2 2 2 2

 4 4 -7 59 -45 83 83 -45 59 -7
 48 48 16 48 48 16 48 48
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 704 BENGT FORNBERG

 TABLE 3

 Some weights for one-sided approximations at a grid point (generated by setting

 M = 4, N =8, xo = 0 and a, = {0,1,2,3,4,5,6,7,8}).

 d
 e

 O r 0

 d a d a Approximations at x = 0;
 rt r u x-coordinates at nodes:

 r

 ov
 f e f y 0 1 2 3 4 5 6 7 8 O oo~~~~1

 1 -1 1

 2 -3 2 -1

 3 -11 3 -3 1
 6 2 3

 -25 4 -1
 4 25 4 -3 43

 12 4

 5 -137 5 -5 10 -5 1

 6 4 6 -15 20 -15 6 -1
 20 2 3 4 5 6

 7 -363 7 -21 35 -35 21 -7 1
 140 2 3 4 5 6 7

 8 -760 8 -41 56 -35 56 -14 8 -1 280 8314 - 2 5 3 7 8

 1 1 -2 1

 2 2 -5 4 -1

 35 -26 19 -14 11
 12 3 2 3 12

 2 4 15 -77 107 13 612 6
 4 6 6 - 12 6

 5 203 -87 117 -254 33 -27 137
 45 5 4 9 2 5 180

 6 469 -223 879 -949 41 -201 1019 -7
 90 10 20 18 10 180 10

 29531 -962 621 -4006 691 -282 2143 -206 363
 7 5040 35 10 45 8 5 90 35 560

 1 -1 3 -3 1

 2 5 9 -12 7 3
 2 ~~~~~~~~~~2

 -17 71 -59 49 -41 7
 4 4 2 2 4 4

 3 4 49 29 -461 62 -307 13 -18 8 8 8

 -967 638 -3929 389 -2545 268 -1849 29
 120 15 40 3 24 5 120 15

 -801 349 -18353 2391 -1457 4891 -561 527 -469
 6 80 6 120 10 6 30 8 30 240

 1 1 -4 6 -4 1

 2 3 -14 26 -24 11 -2

 4 3 35 -31 137 -242 107 -19 17 6 2 ~~~~3 2 6

 4 28 -111 142 -1219 176 -185 82 -7 3 2 12 6 76 2 3~ 2
 1069 -1316 15289 -2144 10993 -4772 2803 -536 967

 5 1 1 80 15 60 5 24 15 20 15 240
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 GENERATION OF FINITE DIFFERENCE FORMULAS 705

 TABLE 4

 Some weights for one-sided approximations at a 'half-way' point (generated by set-

 ting M=4, N=8, xo=0 and ao ={-1/2, 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2}).

 d
 Oe O
 r a ra Approximations at x = 0; d v d C
 e a e c
 r t r u x-coordinates at nodes:

 e v f y -1/2 1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2
 1 1

 2 1 1 2 2 2

 3 S3 3 -1 8 4 8

 4 15 15 -5 1
 16 16 16 16

 n ~~~~35 35 -35 7 -5
 u 5 128 32 64 32 128

 6 63 315 -105 63 .-45 7 6 256 256 128 128 256 256

 231 693 -1155 231 -495 77 -21
 1024 512 1024 256 1024 512 1024

 429 3003 -3003 3003 -2145 1001 -273 33
 8 2048 2048 2048 2048 2048 2048 2048 2048

 6435 6435 -15015 9009 -32175 5005 -4095 495 -429
 32768 4096 8192 4096 16384 4096 8192 4096 32768

 2 -1 1

 -23 7 1 -1
 3 24 8 8 24

 4 -11 17 3 -5 1
 12 24 8 24 24

 5 -563 67 143 -37 29 -71
 640 128 192 64 128 1920

 6 -1627 211 59 -235 91 -443 31 6 1920 640 48 192 128 1920 960
 -88069 2021 28009 -6803 5227 -12673 3539 -3043
 107520 15360 15360 3072 3072 15360 15360 107520

 8 -1423 -491 7753 -18509 3535 -2279 953 -1637 2689
 1792 7168 3072 5120 1024 1024 1024 7168 107520

 1 1 -2 1

 2 3 -7 5 -1 2 2 2 2 2
 43 -14 17 -5 7
 3-4 3 4 3 24

 4 95 -269 49 -85 59 -3
 48 48 8 24 48 16

 12139 -6119 3091 -1759 1211 -919 739
 5 5760 960 384 288 384 960 5760

 25333 -80813 2553 -21457 14651 -3687 8863 -211
 6 11520 11520 256 2304 2304 1280 11520 2304

 81227 -67681 34151 -16747 5669 -76621 1699 -5647 21719
 35840 8960 2880 1280 512 11520 640 8960 322560

 1 -1 3 -3 1

 2 -2 7 -9 5 -1

 -23 91 -71 55 -43 7
 3 8 8 4 4 8 8

 3 -29 127 115 -133 43 -3
 3 4 29 12 -29 4 8 8 4

 -8197 39139 -27219 19699 -15043 12099 -10099 1237
 1920 1920 640 384 384 640 1920 1920

 -2317 47707 -7443 158471 -30037 32091 -40087 1961 -357
 6 480 1920 128 1920 384 640 1920 384 640

 1 1 -4 6 -4 1

 5 -23 17 -3
 2 2 2 21 -19 2t 2

 4 ~ 101 -87 373 -319 273 -47 41
 24 4 8 6 8 4 24

 287 -1639 1341 -5527 4613 -783 677 -85
 48 48 16 48 48 16 48 48

 14861 -1447 21299 -25651 42119 -2951 30437 -1903 1127
 1920 30 160 120 192 20 480 120 640
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