
Finite Difference Laplacian

This example shows how to compute and represent the finite difference Laplacian on an L-shaped domain.

Domain

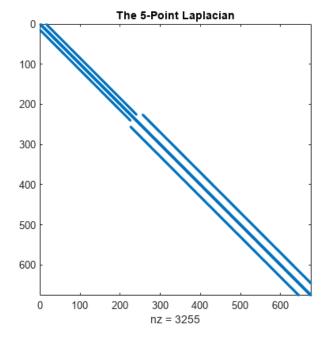
The numgrid function numbers points within an L-shaped domain. The spy function is a useful tool for visualizing the pattern of nonzero elements in a matrix. Use these two functions to generate and display an L-shaped domain.

n = 32; R = 'L'; G = numgrid(R,n); spy(G) title('A Finite Difference Grid')

Show a smaller version of the matrix as a sample.

g = numgrid(R,10)

```
g = 10×10
```


0	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	0
0	1	5	9	13	17	25	33	41	Θ
0	2	6	10	14	18	26	34	42	0
0	3	7	11	15	19	27	35	43	Θ
0	4	8	12	16	20	28	36	44	0
0	Θ	0	Θ	Θ	21	29	37	45	0
0	Θ	0	Θ	Θ	22	30	38	46	0
0	Θ	Θ	Θ	Θ	23	31	39	47	0
0	Θ	Θ	Θ	Θ	24	32	40	48	0
0	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0

Discrete Laplacian

Use delsq to generate the discrete Laplacian. Use the spy function again to get a graphical feel of the matrix elements.

D = delsq(G); spy(D) title('The 5-Point Laplacian') Open in MATLAB Online

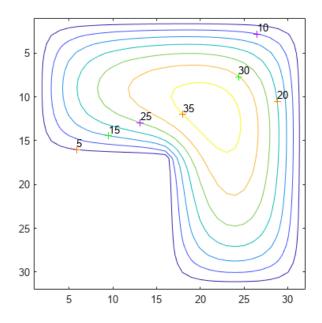
Copy Command

Determine the number of interior points.

$$N = sum(G(:)>0)$$

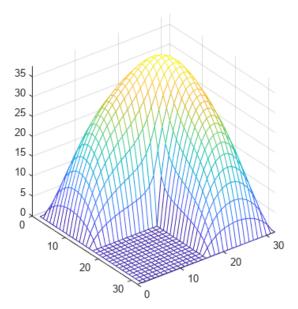
N = 675

Dirichlet Boundary Value Problem


Solve the Dirichlet boundary value problem for the sparse linear system. The problem setup is:

delsq(u) = 1 in the interior, u = 0 on the boundary.

```
rhs = ones(N,1);
if (R == 'N') % For nested dissection, turn off minimum degree ordering.
    spparms('autommd',0)
    u = D\rhs;
    spparms('autommd',1)
else
    u = D\rhs; % This is used for R=='L' as in this example
end
```


Map the solution onto the L-shaped grid and plot it as a contour map.

```
U = G;
U(G>0) = full(u(G(G>0)));
clabel(contour(U));
prism
axis square ij
```


Now show the solution as a mesh plot.

mesh(U)
axis([0 n 0 n 0 max(max(U))])
axis square ij

See Also

spy