randn('state', 0);
rand('state', 0);
n = 10;
m = 50;
tmp = randn(n,1);
A = randn(m,n);
b = A*tmp + 2*rand(m,1);
w = rand(m,1);
cvx_begin
variable x(n)
minimize -sum(w.*log(b-A*x))
cvx_end
disp('The weighted analytic center of the set of linear inequalities is: ');
disp(x);
Successive approximation method to be employed.
For improved efficiency, SDPT3 is solving the dual problem.
SDPT3 will be called several times to refine the solution.
Original size: 150 variables, 60 equality constraints
50 exponentials add 400 variables, 250 equality constraints
-----------------------------------------------------------------
Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------+---------------------------------+---------
50/ 50 | 4.642e+00 1.215e+00 0.000e+00 | Solved
50/ 50 | 9.246e-01 5.647e-02 0.000e+00 | Solved
47/ 50 | 7.922e-02 4.134e-04 0.000e+00 | Solved
35/ 44 | 8.288e-03 4.540e-06 0.000e+00 | Solved
11/ 30 | 9.917e-04 6.459e-08 0.000e+00 | Solved
0/ 5 | 1.158e-04 4.969e-10 0.000e+00 | Solved
-----------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +5.99254
The weighted analytic center of the set of linear inequalities is:
-0.5100
-1.4794
0.3397
0.1944
-1.0444
1.1956
1.3927
-0.2815
0.2862
0.3779