rand('state',0);
randn('state',0);
n = 10;
N = 100;
Strue = sprandsym(n,0.5,0.01,1);
R = inv(full(Strue));
y_sample = sqrtm(R)*randn(n,N);
Y = cov(y_sample');
alpha = 50;
cvx_begin sdp
variable S(n,n) symmetric
maximize log_det(S) - trace(S*Y)
sum(sum(abs(S))) <= alpha
S >= 0
cvx_end
R_hat = inv(S);
S(find(S<1e-4)) = 0;
figure;
subplot(121);
spy(Strue);
title('Inverse of true covariance matrix')
subplot(122);
spy(S)
title('Inverse of estimated covariance matrix')
Successive approximation method to be employed.
For improved efficiency, SDPT3 is solving the dual problem.
SDPT3 will be called several times to refine the solution.
Original size: 503 variables, 223 equality constraints
1 exponentials add 8 variables, 5 equality constraints
-----------------------------------------------------------------
Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------+---------------------------------+---------
1/ 1 | 3.471e+00 6.978e-01 0.000e+00 | Solved
1/ 1 | 3.433e-01 7.438e-03 0.000e+00 | Solved
1/ 1 | 4.190e-03 1.097e-06 0.000e+00 | Solved
0/ 0 | 0.000e+00 0.000e+00 0.000e+00 | Solved
-----------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -31.2401