linewidth = 1;
markersize = 5;
fixed = [ 1 1 -1 -1 1 -1 -0.2 0.1;
1 -1 -1 1 -0.5 -0.2 -1 1]';
M = size(fixed,1);
N = 6;
A = [ 1 0 0 -1 0 0 0 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 -1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 -1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 -1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 -1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 -1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 1 -1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 -1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 -1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 -1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 -1 0 0
0 0 0 1 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 -1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 -1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 1 0 0 -1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 -1 0 0 0 ];
nolinks = size(A,1);
fprintf(1,'Computing the optimal locations of the 6 free points...');
cvx_begin
variable x(N+M,2)
minimize ( sum(square_pos(square_pos(norms( A*x,2,2 )))))
x(N+[1:M],:) == fixed;
cvx_end
fprintf(1,'Done! \n');
free_sum = x(1:N,:);
figure(1);
dots = plot(free_sum(:,1), free_sum(:,2), 'or', fixed(:,1), fixed(:,2), 'bs');
set(dots(1),'MarkerFaceColor','red');
hold on
legend('Free points','Fixed points','Location','Best');
for i=1:nolinks
ind = find(A(i,:));
line2 = plot(x(ind,1), x(ind,2), ':k');
hold on
set(line2,'LineWidth',linewidth);
end
axis([-1.1 1.1 -1.1 1.1]) ;
axis equal;
title('Fourth-order placement problem');
figure(2)
all = [free_sum; fixed];
bins = 0.05:0.1:1.95;
lengths = sqrt(sum((A*all).^2')');
[N2,hist2] = hist(lengths,bins);
bar(hist2,N2);
hold on;
xx = linspace(0,2,1000); yy = (6/1.5^4)*xx.^4;
plot(xx,yy,'--');
axis([0 1.5 0 4.5]);
hold on
plot([0 2], [0 0 ], 'k-');
title('Distribution of the 27 link lengths');
Computing the optimal locations of the 6 free points...
Calling SDPT3 4.0: 351 variables, 150 equality constraints
------------------------------------------------------------
num. of constraints = 150
dim. of sdp var = 108, num. of sdp blk = 54
dim. of socp var = 81, num. of socp blk = 27
dim. of linear var = 108
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|4.3e+01|2.4e+01|4.6e+04| 2.700000e+02 0.000000e+00| 0:0:00| chol 1 1
1|0.595|0.843|1.7e+01|3.8e+00|2.7e+04| 4.321980e+02 -8.195067e+02| 0:0:00| chol 1 1
2|0.847|0.969|2.6e+00|1.3e-01|5.7e+03| 1.138396e+03 -9.843696e+02| 0:0:00| chol 1 1
3|0.850|1.000|4.0e-01|1.0e-03|1.3e+03| 3.149945e+02 -5.267314e+02| 0:0:00| chol 1 1
4|1.000|1.000|1.5e-07|1.0e-04|4.3e+02| 2.834780e+02 -1.472513e+02| 0:0:00| chol 1 1
5|0.907|1.000|1.5e-08|1.0e-05|1.1e+02| 7.599590e+01 -3.717591e+01| 0:0:00| chol 1 1
6|1.000|0.966|1.7e-09|1.3e-06|3.3e+01| 3.988795e+01 7.274760e+00| 0:0:00| chol 1 1
7|0.905|0.988|7.0e-10|1.2e-07|5.5e+00| 2.471875e+01 1.918303e+01| 0:0:00| chol 1 1
8|1.000|0.941|2.7e-10|1.6e-08|2.1e+00| 2.200913e+01 1.995624e+01| 0:0:00| chol 1 1
9|0.907|0.973|1.2e-10|1.5e-09|3.1e-01| 2.088816e+01 2.057402e+01| 0:0:00| chol 1 1
10|1.000|0.937|8.2e-15|2.1e-10|1.1e-01| 2.072219e+01 2.061382e+01| 0:0:00| chol 1 1
11|0.966|0.978|1.0e-14|1.5e-11|4.9e-03| 2.065005e+01 2.064515e+01| 0:0:00| chol 1 1
12|0.919|0.983|2.8e-14|2.2e-12|3.3e-04| 2.064663e+01 2.064630e+01| 0:0:00| chol 1 1
13|1.000|1.000|8.4e-12|1.0e-12|3.3e-05| 2.064635e+01 2.064631e+01| 0:0:00| chol 1 1
14|1.000|1.000|1.1e-12|1.5e-12|1.3e-06| 2.064632e+01 2.064632e+01| 0:0:00| chol 1 1
15|1.000|1.000|7.4e-12|1.0e-12|5.8e-08| 2.064632e+01 2.064632e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 15
primal objective value = 2.06463237e+01
dual objective value = 2.06463236e+01
gap := trace(XZ) = 5.78e-08
relative gap = 1.37e-09
actual relative gap = 1.36e-09
rel. primal infeas (scaled problem) = 7.42e-12
rel. dual " " " = 1.00e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 1.5e+01, 2.8e+01, 4.6e+01
norm(A), norm(b), norm(C) = 2.0e+01, 1.2e+01, 6.2e+00
Total CPU time (secs) = 0.37
CPU time per iteration = 0.02
termination code = 0
DIMACS: 3.0e-11 0.0e+00 3.1e-12 0.0e+00 1.4e-09 1.4e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +20.6463
Done!