linewidth = 1;
markersize = 5;
fixed = [ 1 1 -1 -1 1 -1 -0.2 0.1;
1 -1 -1 1 -0.5 -0.2 -1 1]';
M = size(fixed,1);
N = 6;
A = [ 1 0 0 -1 0 0 0 0 0 0 0 0 0 0
1 0 -1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 -1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 -1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 -1
0 1 -1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 -1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 -1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 -1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 -1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 -1 0
0 0 1 -1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 -1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 -1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 -1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 -1 0 0
0 0 0 1 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 1 -1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 -1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 -1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 1 0 0 -1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 -1 0 0 0 ];
nolinks = size(A,1);
fprintf(1,'Computing the optimal locations of the 6 free points...');
cvx_begin
variable x(N+M,2)
minimize ( sum(square_pos(norms( A*x,2,2 ))))
x(N+[1:M],:) == fixed;
cvx_end
fprintf(1,'Done! \n');
free_sum = x(1:N,:);
figure(1);
dots = plot(free_sum(:,1), free_sum(:,2), 'or', fixed(:,1), fixed(:,2), 'bs');
set(dots(1),'MarkerFaceColor','red');
hold on
legend('Free points','Fixed points','Location','Best');
for i=1:nolinks
ind = find(A(i,:));
line2 = plot(x(ind,1), x(ind,2), ':k');
hold on
set(line2,'LineWidth',linewidth);
end
axis([-1.1 1.1 -1.1 1.1]) ;
axis equal;
title('Quadratic placement problem');
figure(2)
all = [free_sum; fixed];
bins = 0.05:0.1:1.95;
lengths = sqrt(sum((A*all).^2')');
[N2,hist2] = hist(lengths,bins);
bar(hist2,N2);
hold on;
xx = linspace(0,2,1000); yy = (4/1.5^2)*xx.^2;
plot(xx,yy,'--');
axis([0 1.5 0 4.5]);
hold on
plot([0 2], [0 0 ], 'k-');
title('Distribution of the 27 link lengths');
Computing the optimal locations of the 6 free points...
Calling SDPT3 4.0: 216 variables, 96 equality constraints
------------------------------------------------------------
num. of constraints = 96
dim. of sdp var = 54, num. of sdp blk = 27
dim. of socp var = 81, num. of socp blk = 27
dim. of linear var = 54
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|2.3e+01|1.7e+01|1.8e+04| 2.700000e+02 0.000000e+00| 0:0:00| chol 1 1
1|0.692|0.782|7.2e+00|3.7e+00|7.1e+03| 3.503082e+02 -2.313201e+02| 0:0:00| chol 1 1
2|0.864|1.000|9.8e-01|1.0e-02|1.5e+03| 6.040152e+02 -3.577982e+02| 0:0:00| chol 1 1
3|1.000|1.000|6.5e-07|1.0e-03|3.4e+02| 2.022813e+02 -1.422784e+02| 0:0:00| chol 1 1
4|1.000|1.000|7.8e-08|1.0e-04|6.7e+01| 5.801620e+01 -8.700461e+00| 0:0:00| chol 1 1
5|1.000|1.000|1.7e-09|1.0e-05|1.5e+01| 3.119476e+01 1.668938e+01| 0:0:00| chol 1 1
6|0.904|1.000|5.5e-10|1.0e-06|2.3e+00| 2.233983e+01 2.006406e+01| 0:0:00| chol 1 1
7|0.990|0.970|4.8e-10|1.3e-07|2.4e-01| 2.070777e+01 2.047172e+01| 0:0:00| chol 1 1
8|0.972|0.970|2.1e-10|1.4e-08|7.6e-03| 2.055233e+01 2.054477e+01| 0:0:00| chol 1 1
9|0.973|0.971|2.1e-10|1.4e-09|2.1e-04| 2.054745e+01 2.054724e+01| 0:0:00| chol 1 1
10|0.911|0.949|1.8e-11|1.1e-10|1.6e-05| 2.054733e+01 2.054731e+01| 0:0:00| chol 1 2
11|1.000|1.000|3.4e-13|3.7e-12|2.7e-06| 2.054732e+01 2.054731e+01| 0:0:00| chol 1 1
12|1.000|0.998|1.3e-11|1.0e-12|5.3e-08| 2.054731e+01 2.054731e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 12
primal objective value = 2.05473136e+01
dual objective value = 2.05473136e+01
gap := trace(XZ) = 5.28e-08
relative gap = 1.25e-09
actual relative gap = 1.26e-09
rel. primal infeas (scaled problem) = 1.26e-11
rel. dual " " " = 1.01e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 1.1e+01, 1.3e+01, 2.0e+01
norm(A), norm(b), norm(C) = 1.6e+01, 1.1e+01, 6.2e+00
Total CPU time (secs) = 0.25
CPU time per iteration = 0.02
termination code = 0
DIMACS: 4.5e-11 0.0e+00 3.1e-12 0.0e+00 1.3e-09 1.3e-09
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +20.5473
Done!