As = {}; bs = {}; cs = {};
As{1} = [ 0.1355 0.1148; 0.1148 0.4398];
As{2} = [ 0.6064 -0.1022; -0.1022 0.7344];
As{3} = [ 0.7127 -0.0559; -0.0559 0.9253];
As{4} = [ 0.2706 -0.1379; -0.1379 0.2515];
As{5} = [ 0.4008 -0.1112; -0.1112 0.2107];
bs{1} = [ -0.2042 0.0264]';
bs{2} = [ 0.8259 -2.1188]';
bs{3} = [ -0.0256 1.0591]';
bs{4} = [ 0.1827 -0.3844]';
bs{5} = [ 0.3823 -0.8253]';
cs{1} = 0.2351;
cs{2} = 5.8250;
cs{3} = 0.9968;
cs{4} = -0.2981;
cs{5} = 2.6735;
n = 2;
m = size(bs,2);
cvx_begin sdp
variable Asqr(n,n) symmetric
variable btilde(n)
variable t(m)
maximize( det_rootn( Asqr ) )
subject to
t >= 0;
for i = 1:m
[ -(Asqr - t(i)*As{i}), -(btilde - t(i)*bs{i}), zeros(n,n);
-(btilde - t(i)*bs{i})', -(- 1 - t(i)*cs{i}), -btilde';
zeros(n,n), -btilde, Asqr] >= 0;
end
cvx_end
A = sqrtm(Asqr);
b = A\btilde;
noangles = 200;
angles = linspace( 0, 2 * pi, noangles );
clf
for i=1:m
Ai = sqrtm(As{i}); bi = Ai\bs{i};
alpha = bs{i}'*inv(As{i})*bs{i} - cs{i};
ellipse = Ai \ [ sqrt(alpha)*cos(angles)-bi(1) ; sqrt(alpha)*sin(angles)-bi(2) ];
plot( ellipse(1,:), ellipse(2,:), 'b-' );
hold on
end
ellipse = A \ [ cos(angles) - b(1) ; sin(angles) - b(2) ];
plot( ellipse(1,:), ellipse(2,:), 'r--' );
axis square
axis off
hold off
Calling SDPT3 4.0: 94 variables, 15 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------
num. of constraints = 15
dim. of sdp var = 31, num. of sdp blk = 7
dim. of linear var = 6
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|5.3e+01|1.9e+01|3.7e+03| 5.000000e+01 0.000000e+00| 0:0:00| chol 1 1
1|0.784|0.775|1.2e+01|4.3e+00|9.5e+02| 2.983363e+01 -7.077314e+00| 0:0:00| chol 1 1
2|0.845|0.744|1.8e+00|1.1e+00|3.3e+02| 4.983568e+01 -8.153378e+00| 0:0:00| chol 1 1
3|1.000|0.894|8.9e-06|1.2e-01|5.6e+01| 3.017981e+01 -1.898935e+00| 0:0:00| chol 1 1
4|0.733|1.000|5.6e-06|1.0e-04|1.5e+01| 1.511527e+01 -3.114373e-01| 0:0:00| chol 1 1
5|0.925|0.986|4.3e-07|1.2e-05|1.2e+00| 1.190285e+00 3.201085e-03| 0:0:00| chol 1 1
6|1.000|1.000|6.9e-09|1.1e-06|5.3e-01| 5.626657e-01 3.398809e-02| 0:0:00| chol 1 1
7|0.896|0.991|2.1e-09|1.1e-07|5.9e-02| 1.220844e-01 6.287837e-02| 0:0:00| chol 1 1
8|1.000|0.924|6.4e-09|1.8e-08|2.1e-02| 9.631015e-02 7.562064e-02| 0:0:00| chol 1 1
9|0.955|0.945|6.1e-10|2.6e-09|1.2e-03| 7.968284e-02 7.848102e-02| 0:0:00| chol 1 1
10|0.936|0.984|3.9e-11|2.6e-10|7.6e-05| 7.875163e-02 7.867538e-02| 0:0:00| chol 1 1
11|0.955|0.967|1.8e-12|1.6e-11|3.6e-06| 7.868475e-02 7.868112e-02| 0:0:00| chol 1 1
12|1.000|1.000|1.8e-09|1.0e-12|5.6e-07| 7.868191e-02 7.868136e-02| 0:0:00| chol 1 1
13|1.000|1.000|7.5e-11|1.5e-12|2.2e-08| 7.868148e-02 7.868146e-02| 0:0:00|# chol 1 1
14|1.000|1.000|5.3e-11|2.2e-12|1.0e-09| 7.868147e-02 7.868146e-02| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 14
primal objective value = 7.86814654e-02
dual objective value = 7.86814643e-02
gap := trace(XZ) = 1.01e-09
relative gap = 8.75e-10
actual relative gap = 8.81e-10
rel. primal infeas (scaled problem) = 5.33e-11
rel. dual " " " = 2.25e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 2.4e+00, 3.0e+00, 8.1e+00
norm(A), norm(b), norm(C) = 1.4e+01, 2.0e+00, 3.2e+00
Total CPU time (secs) = 0.23
CPU time per iteration = 0.02
termination code = 0
DIMACS: 5.3e-11 0.0e+00 3.6e-12 0.0e+00 8.8e-10 8.7e-10
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.0786815