n = 2;
K = 11;
randn('state',0);
P = randn(n,K);
fprintf(1,'Minimizing the sum of the squares the distances to fixed points...');
cvx_begin
variable x(2)
minimize ( sum( square_pos( norms(x*ones(1,K) - P,2) ) ) )
cvx_end
fprintf(1,'Done! \n');
disp('------------------------------------------------------------------');
disp('The optimal point location is: ');
disp(x);
disp('The average location of the fixed points is');
disp(sum(P,2)/K);
disp('They are the same as expected!');
Minimizing the sum of the squares the distances to fixed points...
Calling SDPT3 4.0: 88 variables, 42 equality constraints
------------------------------------------------------------
num. of constraints = 42
dim. of sdp var = 22, num. of sdp blk = 11
dim. of socp var = 33, num. of socp blk = 11
dim. of linear var = 22
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
HKM 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|1.8e+01|1.5e+01|7.3e+03| 1.100000e+02 0.000000e+00| 0:0:00| chol 1 1
1|0.637|0.756|6.7e+00|3.8e+00|3.5e+03| 1.418911e+02 -6.667195e+01| 0:0:00| chol 1 1
2|0.763|0.990|1.6e+00|4.6e-02|9.9e+02| 2.987271e+02 -1.488760e+02| 0:0:00| chol 1 1
3|1.000|1.000|5.9e-07|1.0e-03|1.6e+02| 1.005763e+02 -6.360729e+01| 0:0:00| chol 1 1
4|1.000|1.000|9.4e-08|1.0e-04|4.9e+01| 4.828646e+01 -8.200827e-01| 0:0:00| chol 1 1
5|0.885|1.000|1.2e-08|1.0e-05|8.6e+00| 2.267532e+01 1.408310e+01| 0:0:00| chol 1 1
6|1.000|0.967|1.5e-09|1.3e-06|2.3e+00| 1.824747e+01 1.593419e+01| 0:0:00| chol 1 1
7|0.906|0.979|4.2e-10|1.3e-07|2.6e-01| 1.688821e+01 1.662966e+01| 0:0:00| chol 1 1
8|1.000|0.982|6.2e-10|1.2e-08|5.5e-02| 1.672161e+01 1.666619e+01| 0:0:00| chol 1 1
9|0.970|0.978|1.4e-10|1.4e-09|1.8e-03| 1.668444e+01 1.668266e+01| 0:0:00| chol 1 1
10|0.976|0.983|3.2e-12|5.1e-11|3.9e-05| 1.668315e+01 1.668311e+01| 0:0:00| chol 1 1
11|0.926|1.000|1.5e-11|1.0e-12|7.0e-06| 1.668312e+01 1.668312e+01| 0:0:00| chol 2 1
12|1.000|1.000|4.9e-11|1.5e-12|8.0e-07| 1.668312e+01 1.668312e+01| 0:0:00| chol 1 2
13|0.994|1.000|1.5e-12|2.3e-12|1.6e-08| 1.668312e+01 1.668312e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 13
primal objective value = 1.66831189e+01
dual objective value = 1.66831189e+01
gap := trace(XZ) = 1.55e-08
relative gap = 4.52e-10
actual relative gap = 4.51e-10
rel. primal infeas (scaled problem) = 1.54e-12
rel. dual " " " = 2.25e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 1.1e+01, 1.3e+01, 1.9e+01
norm(A), norm(b), norm(C) = 1.0e+01, 9.0e+00, 4.3e+00
Total CPU time (secs) = 0.25
CPU time per iteration = 0.02
termination code = 0
DIMACS: 2.9e-12 0.0e+00 4.9e-12 0.0e+00 4.5e-10 4.5e-10
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +16.6831
Done!
------------------------------------------------------------------
The optimal point location is:
0.0379
0.0785
The average location of the fixed points is
0.0379
0.0785
They are the same as expected!