rand('state',0);
n = 10;
m = 100;
atrue = rand(n,1);
btrue = rand;
u = rand(n,m);
mu = atrue'*u + btrue;
L = exp(-mu);
ns = ceil(max(10*mu));
y = sum(cumprod(rand(ns,m))>=L(ones(ns,1),:));
cvx_begin
variables a(n) b(1)
maximize sum(y.*log(a'*u+b) - (a'*u+b))
cvx_end
Successive approximation method to be employed.
For improved efficiency, SDPT3 is solving the dual problem.
SDPT3 will be called several times to refine the solution.
Original size: 276 variables, 103 equality constraints
92 exponentials add 736 variables, 460 equality constraints
-----------------------------------------------------------------
Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------+---------------------------------+---------
92/ 92 | 6.764e-01 3.304e-02 0.000e+00 | Solved
90/ 92 | 5.602e-02 2.250e-04 0.000e+00 | Solved
55/ 88 | 1.386e-03 1.261e-07 0.000e+00 | Solved
0/ 34 | 1.389e-04 1.143e-09 0.000e+00 | Solved
-----------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +102.57