randn('state',0);
n = 10;
N = 1000;
tmp = randn(n);
L = tmp*tmp';
tmp = randn(n);
U = L + tmp*tmp';
R = (L+U)/2;
y_sample = sqrtm(R)*randn(n,N);
Y = cov(y_sample');
Ui = inv(U); Ui = 0.5*(Ui+Ui');
Li = inv(L); Li = 0.5*(Li+Li');
cvx_begin sdp
variable S(n,n) symmetric
maximize( log_det(S) - trace(S*Y) );
S >= Ui;
S <= Li;
cvx_end
R_hat = inv(S);
Successive approximation method to be employed.
For improved efficiency, SDPT3 is solving the dual problem.
SDPT3 will be called several times to refine the solution.
Original size: 357 variables, 123 equality constraints
1 exponentials add 8 variables, 5 equality constraints
-----------------------------------------------------------------
Cones | Errors |
Mov/Act | Centering Exp cone Poly cone | Status
--------+---------------------------------+---------
1/ 1 | 3.564e+00 7.339e-01 0.000e+00 | Solved
1/ 1 | 4.992e-01 1.578e-02 0.000e+00 | Solved
1/ 1 | 6.554e-03 2.691e-06 0.000e+00 | Solved
0/ 1 | 1.506e-04 1.227e-09 0.000e+00 | Solved
-----------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -30.6698