% Section 6.5.4
% Boyd & Vandenberghe "Convex Optimization"
% Original by Lieven Vandenberghe
% Adapted for CVX by Argyris Zymnis - 11/27/2005
%
% Here we find a sparse basis for a signal y out of
% a set of Gabor functions. We do this by solving
%       minimize  ||A*x-y||_2 + ||x||_1
%
% where the columns of A are sampled Gabor functions.
% We then fix the sparsity pattern obtained and solve
%       minimize  ||A*x-y||_2
%
% NOTE: The file takes a while to run

clear

% Problem parameters
sigma = 0.05;  % Size of Gaussian function
Tinv  = 500;   % Inverse of sample time
Thr   = 0.001; % Basis signal threshold
kmax  = 30;    % Number of signals are 2*kmax+1
w0    = 5;     % Base frequency (w0 * kmax should be 150 for good results)

% Build sine/cosine basis
fprintf(1,'Building dictionary matrix...');
% Gaussian kernels
TK = (Tinv+1)*(2*kmax+1);
t  = (0:Tinv)'/Tinv;
A  = exp(-t.^2/(sigma^2));
ns = nnz(A>=Thr)-1;
A  = A([ns+1:-1:1,2:ns+1],:);
ii = (0:2*ns)';
jj = ones(2*ns+1,1)*(1:Tinv+1);
oT = ones(1,Tinv+1);
A  = sparse(ii(:,oT)+jj,jj,A(:,oT));
A  = A(ns+1:ns+Tinv+1,:);
% Sine/Cosine basis
k  = [ 0, reshape( [ 1 : kmax ; 1 : kmax ], 1, 2 * kmax ) ];
p  = zeros(1,2*kmax+1); p(3:2:end) = -pi/2;
SC = cos(w0*t*k+ones(Tinv+1,1)*p);
% Multiply
ii = 1:numel(SC);
jj = rem(ii-1,Tinv+1)+1;
A  = sparse(ii,jj,SC(:)) * A;
A  = reshape(A,Tinv+1,(Tinv+1)*(2*kmax+1));
fprintf(1,'done.\n');

% Construct example signal
a = 0.5*sin(t*11)+1;
theta = sin(5*t)*30;
b = a.*sin(theta);

% Solve the Basis Pursuit problem
disp('Solving Basis Pursuit problem...');
tic
cvx_begin
    variable x(30561)
    minimize(sum_square(A*x-b)+norm(x,1))
cvx_end
disp('done');
toc

% Reoptimize problem over nonzero coefficients
p = find(abs(x) > 1e-5);
A2 = A(:,p);
x2 = A2 \ b;

% Constants
M = 61; % Number of different Basis signals
sk = 250; % Index of s = 0.5

% Plot example basis functions;
%if (0) % to do this, re-run basispursuit.m to create A
figure(1); clf;
subplot(3,1,1); plot(t,A(:,M*sk+1)); axis([0 1 -1 1]);
title('Basis function 1');
subplot(3,1,2); plot(t,A(:,M*sk+31)); axis([0 1 -1 1]);
title('Basis function 2');
subplot(3,1,3); plot(t,A(:,M*sk+61)); axis([0 1 -1 1]);
title('Basis function 3');
%print -deps bp-dict_helv.eps

% Plot reconstructed signal
figure(2); clf;
subplot(2,1,1);
plot(t,A2*x2,'--',t,b,'-'); axis([0 1 -1.5 1.5]);
xlabel('t'); ylabel('y_{hat} and y');
title('Original and Reconstructed signals')
subplot(2,1,2);
plot(t,A2*x2-b); axis([0 1 -0.06 0.06]);
title('Reconstruction error')
xlabel('t'); ylabel('y - y_{hat}');
%print -deps bp-approx_helv.eps

% Plot frequency plot
figure(3); clf;

subplot(2,1,1);
plot(t,b); xlabel('t'); ylabel('y'); axis([0 1 -1.5 1.5]);
title('Original Signal')
subplot(2,1,2);
plot(t,150*abs(cos(w0*t)),'--');
hold on;
for k = 1:length(t);
  if(abs(x((k-1)*M+1)) > 1e-5), plot(t(k),0,'o'); end;
  for j = 2:2:kmax*2
    if((abs(x((k-1)*M+j)) > 1e-5) | (abs(x((k-1)*M+j+1)) > 1e-5)),
      plot(t(k),w0*j/2,'o');
    end;
  end;
end;
xlabel('t'); ylabel('w');
title('Instantaneous frequency')
hold off;
Building dictionary matrix...done.
Solving Basis Pursuit problem...
 
Calling SDPT3 4.0: 61625 variables, 502 equality constraints
------------------------------------------------------------

 num. of constraints = 502
 dim. of socp   var  = 61625,   num. of socp blk  = 30562
*******************************************************************
   SDPT3: Infeasible path-following algorithms
*******************************************************************
 version  predcorr  gam  expon  scale_data
    NT      1      0.000   1        0    
it pstep dstep pinfeas dinfeas  gap      prim-obj      dual-obj    cputime
-------------------------------------------------------------------
 0|0.000|0.000|1.5e+00|1.7e+02|7.6e+06| 4.324221e+04  0.000000e+00| 0:0:02| chol  1  1 
 1|1.000|0.995|3.6e-07|1.0e+00|8.6e+04| 4.270270e+04 -7.964108e+01| 0:0:04| chol  1  1 
 2|1.000|0.989|4.6e-07|2.1e-02|1.1e+04| 1.102337e+04 -7.582646e-01| 0:0:07| chol  1  1 
 3|0.970|0.989|2.1e-08|1.2e-03|3.4e+02| 3.397756e+02  3.356358e-01| 0:0:10| chol  1  1 
 4|0.484|0.886|1.2e-08|2.3e-04|2.1e+02| 2.206064e+02  6.421842e+00| 0:0:13| chol  1  1 
 5|0.772|0.915|2.8e-09|2.8e-05|1.0e+02| 1.106558e+02  1.003458e+01| 0:0:15| chol  1  1 
 6|0.507|0.828|1.4e-09|5.7e-06|6.6e+01| 7.735771e+01  1.171877e+01| 0:0:18| chol  1  1 
 7|0.514|0.678|6.7e-10|1.9e-06|4.0e+01| 5.172854e+01  1.210713e+01| 0:0:21| chol  1  1 
 8|0.362|0.850|4.3e-10|3.0e-07|3.0e+01| 4.235935e+01  1.241274e+01| 0:0:24| chol  1  1 
 9|0.447|0.604|2.4e-10|1.2e-07|2.0e+01| 3.222978e+01  1.253063e+01| 0:0:27| chol  1  1 
10|0.527|0.932|1.1e-10|8.1e-09|1.2e+01| 2.482939e+01  1.268651e+01| 0:0:30| chol  1  1 
11|0.624|0.687|4.2e-11|2.6e-09|6.6e+00| 1.932119e+01  1.274802e+01| 0:0:33| chol  1  1 
12|0.599|0.980|1.7e-11|6.1e-11|3.7e+00| 1.649674e+01  1.281034e+01| 0:0:36| chol  1  1 
13|0.543|0.647|7.7e-12|2.5e-11|2.2e+00| 1.507030e+01  1.282581e+01| 0:0:39| chol  1  1 
14|0.541|0.964|3.5e-12|2.5e-12|1.3e+00| 1.413866e+01  1.283901e+01| 0:0:42| chol  1  1 
15|0.728|0.656|9.8e-13|1.8e-12|5.3e-01| 1.337669e+01  1.284169e+01| 0:0:45| chol  1  1 
16|0.458|0.608|7.3e-13|1.7e-12|3.4e-01| 1.318123e+01  1.284339e+01| 0:0:48| chol  1  1 
17|0.590|0.955|5.4e-13|1.1e-12|1.9e-01| 1.303175e+01  1.284468e+01| 0:0:51| chol  1  1 
18|0.961|0.987|1.8e-12|1.0e-12|4.6e-02| 1.289055e+01  1.284500e+01| 0:0:54| chol  1  1 
19|0.761|0.883|4.3e-12|1.1e-12|1.6e-02| 1.286137e+01  1.284512e+01| 0:0:57| chol  1  1 
20|0.882|0.884|1.8e-11|1.1e-12|2.8e-03| 1.284795e+01  1.284515e+01| 0:0:59| chol  1  1 
21|0.943|0.968|5.3e-11|1.5e-12|2.8e-04| 1.284543e+01  1.284516e+01| 0:1:02| chol  2  2 
22|0.628|0.970|3.9e-11|2.3e-12|1.5e-04| 1.284530e+01  1.284516e+01| 0:1:05| chol  2  2 
23|0.631|1.000|2.2e-11|3.4e-12|7.8e-05| 1.284523e+01  1.284516e+01| 0:1:08| chol  1  2 
24|0.623|1.000|1.1e-11|4.3e-12|4.2e-05| 1.284520e+01  1.284516e+01| 0:1:11| chol  2  2 
25|0.619|1.000|6.8e-12|2.3e-12|2.3e-05| 1.284518e+01  1.284516e+01| 0:1:14| chol  1  2 
26|0.602|1.000|5.0e-12|1.4e-12|1.3e-05| 1.284517e+01  1.284516e+01| 0:1:16| chol  2  2 
27|0.591|1.000|3.6e-12|1.0e-12|7.0e-06| 1.284516e+01  1.284516e+01| 0:1:19| chol  2  2 
28|0.599|1.000|2.8e-12|1.0e-12|3.9e-06| 1.284516e+01  1.284516e+01| 0:1:22| chol  2  2 
29|0.606|1.000|2.1e-12|1.0e-12|2.2e-06| 1.284516e+01  1.284516e+01| 0:1:25| chol  2  2 
30|0.612|1.000|1.8e-12|1.0e-12|1.2e-06| 1.284516e+01  1.284516e+01| 0:1:28| chol  2  2 
31|0.618|1.000|1.9e-12|1.0e-12|6.4e-07| 1.284516e+01  1.284516e+01| 0:1:31| chol  2  2 
32|0.622|1.000|2.0e-12|1.0e-12|3.4e-07| 1.284516e+01  1.284516e+01| 0:1:34|
  stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
 number of iterations   = 32
 primal objective value =  1.28451560e+01
 dual   objective value =  1.28451557e+01
 gap := trace(XZ)       = 3.44e-07
 relative gap           = 1.29e-08
 actual relative gap    = 1.29e-08
 rel. primal infeas (scaled problem)   = 1.97e-12
 rel. dual     "        "       "      = 1.00e-12
 rel. primal infeas (unscaled problem) = 0.00e+00
 rel. dual     "        "       "      = 0.00e+00
 norm(X), norm(y), norm(Z) = 3.5e+00, 9.9e-01, 1.9e+02
 norm(A), norm(b), norm(C) = 6.9e+02, 1.9e+01, 1.8e+02
 Total CPU time (secs)  = 93.60  
 CPU time per iteration = 2.92  
 termination code       =  0
 DIMACS: 1.5e-11  0.0e+00  8.8e-11  0.0e+00  1.3e-08  1.3e-08
-------------------------------------------------------------------
 
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +12.8452
 
done
Elapsed time is 109.096507 seconds.