P = [13 12 -2; 12 17 6; -2 6 12];
q = [-22; -14.5; 13];
r = 1;
n = 3;
x_star = [1;1/2;-1];
fprintf(1,'Computing the optimal solution ...');
cvx_begin
variable x(n)
minimize ( (1/2)*quad_form(x,P) + q'*x + r)
x >= -1;
x <= 1;
cvx_end
fprintf(1,'Done! \n');
disp('------------------------------------------------------------------------');
disp('The computed optimal solution is: ');
disp(x);
disp('The given optimal solution is: ');
disp(x_star);
Computing the optimal solution ...
Calling SDPT3 4.0: 11 variables, 4 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------
num. of constraints = 4
dim. of socp var = 5, num. of socp blk = 1
dim. of linear var = 6
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|9.5e-01|4.3e+00|2.3e+03| 2.204541e+02 0.000000e+00| 0:0:00| chol 1 1
1|1.000|1.000|4.5e-07|5.0e-02|2.0e+02| 2.080252e+02 2.878193e+01| 0:0:00| chol 1 1
2|0.943|0.925|6.8e-08|8.4e-03|1.2e+01| 4.760357e+01 3.641164e+01| 0:0:00| chol 1 1
3|0.791|1.000|4.1e-07|5.0e-04|5.7e+00| 4.293607e+01 3.726829e+01| 0:0:00| chol 1 1
4|1.000|0.888|5.7e-08|1.0e-04|1.4e+00| 4.015948e+01 3.881176e+01| 0:0:00| chol 1 1
5|0.883|1.000|9.4e-09|5.0e-06|3.0e-01| 3.931792e+01 3.901936e+01| 0:0:00| chol 1 1
6|1.000|0.983|2.6e-09|5.8e-07|1.6e-02| 3.913463e+01 3.911827e+01| 0:0:00| chol 1 1
7|0.977|0.972|3.3e-10|6.5e-08|4.2e-04| 3.912522e+01 3.912480e+01| 0:0:00| chol 1 1
8|0.988|0.988|8.6e-12|8.7e-10|5.2e-06| 3.912500e+01 3.912500e+01| 0:0:00| chol 1 1
9|0.996|0.994|6.5e-12|6.9e-12|7.3e-08| 3.912500e+01 3.912500e+01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 9
primal objective value = 3.91250000e+01
dual objective value = 3.91250000e+01
gap := trace(XZ) = 7.33e-08
relative gap = 9.25e-10
actual relative gap = 9.24e-10
rel. primal infeas (scaled problem) = 6.53e-12
rel. dual " " " = 6.87e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 3.8e+01, 3.1e+00, 4.2e+00
norm(A), norm(b), norm(C) = 4.3e+00, 3.4e+01, 5.3e+00
Total CPU time (secs) = 0.12
CPU time per iteration = 0.01
termination code = 0
DIMACS: 9.5e-12 0.0e+00 1.2e-11 0.0e+00 9.2e-10 9.3e-10
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): -21.625
Done!
------------------------------------------------------------------------
The computed optimal solution is:
1.0000
0.5000
-1.0000
The given optimal solution is:
1.0000
0.5000
-1.0000