randn('state',0);
n = 10; m = 2*n;
A = randn(m,n);
b = A*rand(n,1) + 2*rand(m,1);
norm_ai = sum(A.^2,2).^(.5);
fprintf(1,'Computing Chebyshev center...');
cvx_begin
variable r(1)
variable x_c(n)
dual variable y
maximize ( r )
y: A*x_c + r*norm_ai <= b;
cvx_end
fprintf(1,'Done! \n');
fprintf(1,'The Chebyshev center coordinates are: \n');
disp(x_c);
fprintf(1,'The radius of the largest Euclidean ball is: \n');
disp(r);
Computing Chebyshev center...
Calling SDPT3 4.0: 20 variables, 11 equality constraints
For improved efficiency, SDPT3 is solving the dual problem.
------------------------------------------------------------
num. of constraints = 11
dim. of linear var = 20
*******************************************************************
SDPT3: Infeasible path-following algorithms
*******************************************************************
version predcorr gam expon scale_data
NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime
-------------------------------------------------------------------
0|0.000|0.000|2.9e+02|8.9e+00|2.8e+03| 1.721824e+02 0.000000e+00| 0:0:00| chol 1 1
1|0.971|1.000|8.4e+00|6.8e-02|8.5e+01| 5.569883e+00 -4.336238e+00| 0:0:00| chol 1 1
2|0.940|1.000|5.0e-01|6.8e-03|8.0e+00| 6.227339e-01 -3.291097e+00| 0:0:00| chol 1 1
3|0.776|0.715|1.1e-01|2.4e-03|2.7e+00| 4.213392e-01 -1.146735e+00| 0:0:00| chol 1 1
4|0.831|0.952|1.9e-02|1.8e-04|4.0e-01| 3.637727e-01 9.795053e-02| 0:0:00| chol 1 1
5|1.000|0.969|5.3e-09|3.8e-03|6.9e-02| 3.535620e-01 2.863755e-01| 0:0:00| chol 1 1
6|1.000|0.987|5.8e-09|5.1e-05|2.6e-02| 3.479517e-01 3.218399e-01| 0:0:00| chol 1 1
7|0.988|1.000|4.5e-10|7.0e-08|1.0e-02| 3.392570e-01 3.288598e-01| 0:0:00| chol 1 1
8|1.000|0.844|4.5e-10|1.7e-08|1.8e-03| 3.374285e-01 3.356581e-01| 0:0:00| chol 1 1
9|1.000|1.000|1.4e-10|7.7e-10|3.5e-04| 3.371978e-01 3.368475e-01| 0:0:00| chol 1 1
10|0.987|0.985|2.0e-12|1.1e-10|5.0e-06| 3.370613e-01 3.370563e-01| 0:0:00| chol 1 1
11|1.000|0.996|3.9e-13|1.5e-12|7.2e-08| 3.370594e-01 3.370594e-01| 0:0:00| chol 1 1
12|1.000|0.997|1.2e-13|1.0e-12|8.9e-10| 3.370594e-01 3.370594e-01| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.49e-08
-------------------------------------------------------------------
number of iterations = 12
primal objective value = 3.37059399e-01
dual objective value = 3.37059398e-01
gap := trace(XZ) = 8.91e-10
relative gap = 5.32e-10
actual relative gap = 5.32e-10
rel. primal infeas (scaled problem) = 1.19e-13
rel. dual " " " = 1.00e-12
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 1.5e-01, 7.7e+00, 2.4e+01
norm(A), norm(b), norm(C) = 1.9e+01, 2.0e+00, 6.5e+00
Total CPU time (secs) = 0.10
CPU time per iteration = 0.01
termination code = 0
DIMACS: 1.2e-13 0.0e+00 1.7e-12 0.0e+00 5.3e-10 5.3e-10
-------------------------------------------------------------------
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.337059
Done!
The Chebyshev center coordinates are:
-0.1116
-1.5760
0.1079
-2.1751
3.2264
3.5820
4.3394
3.0680
0.4449
0.3164
The radius of the largest Euclidean ball is:
0.3371