Home License -- for personal use only. Not for government, academic, research, commercial, or other organizational use. 19-Dec-2025 19:59:30 ccl_test(): MATLAB/Octave version 9.11.0.2358333 (R2021b) Update 7. Test ccl() Read sets of points in [-1,+1], computed by chebyshev_1d_lumping(). For a set of dimension N, estimate the Lebesgue constant L, and the ratio of L to log(N+1). chebyzero_test(): Read sets of Chebyshev Zero nodes in [-1,+1], computed by chebyshev_1d_lumping(). For a set of dimension N, estimate the Lebesgue constant L, and the ratio of L to log(N+1). L(N) = Lebesgue constants 1: 5 1.98885 2: 9 2.36186 3: 17 2.76635 4: 33 3.18851 5: 65 3.62003 6: 129 4.05638 7: 257 4.49518 L2 = L(N)/log(N+1): 1: 5 1.11 2: 9 1.02574 3: 17 0.957093 4: 33 0.904192 5: 65 0.86404 6: 129 0.833354 7: 257 0.80951 CVT_CHEBYSHEV_TEST: Read sets of CVT nodes initialized "C" in [-1,+1], computed by CHEBYSHEV_1D_LUMPING. For a set of dimension N, estimate the Lebesgue constant L, and the ratio of L to log(N+1). L(N) = Lebesgue constants 1: 5 1.57088 2: 9 1.94639 3: 17 2.36552 4: 33 2.84216 5: 65 3.44077 6: 129 4.27972 7: 257 5.40298 L2 = L(N)/log(N+1): 1: 5 0.876724 2: 9 0.845305 3: 17 0.818414 4: 33 0.805976 5: 65 0.821253 6: 129 0.879238 7: 257 0.972992 CVT_RANDOM_TEST: Read sets of CVT nodes initialized "R" in [-1,+1], computed by CHEBYSHEV_1D_LUMPING. For a set of dimension N, estimate the Lebesgue constant L, and the ratio of L to log(N+1). L(N) = Lebesgue constants 1: 5 1.57087 2: 9 1.94634 3: 17 19847.6 4: 33 2.84288 5: 65 17.1709 6: 129 2.80138e+33 7: 257 8.38553e+70 L2 = L(N)/log(N+1): 1: 5 0.876722 2: 9 0.845285 3: 17 6866.79 4: 33 0.806179 5: 65 4.09841 6: 129 5.75524e+32 7: 257 1.5101e+70 CVT_UNIFORM_TEST: Read sets of CVT nodes initialized "U" in [-1,+1], computed by CHEBYSHEV_1D_LUMPING. For a set of dimension N, estimate the Lebesgue constant L, and the ratio of L to log(N+1). L(N) = Lebesgue constants 1: 5 1.57088 2: 9 1.94639 3: 17 2.36552 4: 33 2.8422 5: 65 22.4881 6: 129 2.48569e+18 7: 257 3.10444e+58 L2 = L(N)/log(N+1): 1: 5 0.876724 2: 9 0.845305 3: 17 0.818414 4: 33 0.805987 5: 65 5.36754 6: 129 5.10667e+17 7: 257 5.5906e+57 lebesgue_constant_test() Test lebesgue_constant() for a simple case of equally spaced points in [ -1, 1] NI = number of interpolating points. NF = number of sample points Case 1: fix NI, try sequence of NF values 11 2 0 11 3 0 11 5 2.75909 11 9 5.62613 11 17 18.3303 11 33 29.894 11 65 29.894 11 129 29.894 11 257 29.894 11 513 29.894 Case 2: fix NF, try sequence of NI values 1 1001 1 2 1001 1 3 1001 1.25 4 1001 1.63113 5 1001 2.20782 6 1001 3.10628 7 1001 4.54934 8 1001 6.92945 9 1001 10.945 10 1001 17.8476 11 1001 29.8981 ccl_test(): Normal end of execution. 19-Dec-2025 19:59:30