JALZK N, AVERIT'T

COLLEGE

GRADUATE _ o
STUDIES Georgia Southern University
T Digital Commons@Georgia Southern
Electronic Theses & Dissertations Graduate Studies, Jack N. Averitt College of
Summer 2013

Pressure Poisson Method for the Incompressible
Navier-Stokes Equations Using Galerkin Finite
Elements

John Cornthwaite
Georgia Southern University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

b Part of the Mathematics Commons, and the Numerical Analysis and Computation Commons

Recommended Citation
Cornthwaite, John, "Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements"

(2013). Electronic Theses & Dissertations. 831.
https://digitalcommons.georgiasouthern.edu/etd/831

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia
Southern. It has been accepted for inclusion in Electronic Theses & Dissertations by an authorized administrator of Digital Commons@Georgia

Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/cogs?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/831?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

PRESSURE POISSON METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS USING GALERKIN FINITE
ELEMENTS

by
JOHN P. CORNTHWAITE

(Under the Direction of Shijun Zheng)

ABSTRACT

In this thesis we examine the Navier-Stokes equations (NSE) with the continuity equa-
tion replaced by a pressure Poisson equation (PPE). Appropriate boundary conditions
are developed for the PPE, which allow for a fully decoupled numerical scheme to
recover the pressure. The variational form of the NSE with PPE is derived and used
in the Galerkin Finite Element discretization. The Galerkin finite element method is

then used to solve the NSE with PPE. Moderate accuracy is shown.

INDEX WORDS: Thesis, Navier-Stokes, Pressure Poisson Equation, Galerkin

Finite Element, Applied Mathematics, Partial Differential Equations

2010 Mathematics Subject Classification: 35Q30, 65M60

PRESSURE POISSON METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS USING GALERKIN FINITE
ELEMENTS

by
JOHN P. CORNTHWAITE

B.A., Rice University, 2003

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial
Fulfillment

of the Requirement for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2013

(©2013
JOHN P. CORNTHWAITE
All Rights Reserved

1l

PRESSURE POISSON METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS USING GALERKIN FINITE
ELEMENTS

by
JOHN P. CORNTHWAITE

Major Professor: Shijun Zheng

Committee: Scott Kersey

Yan Wu
Cheng Zhang

Electronic Version Approved:

July, 2013

v

DEDICATION

This thesis is dedicated to my beautiful children Naomi and Quentin who inspire and

motivate me.

ACKNOWLEDGMENTS
I would like to thank my advisors, Drs. Shijun Zheng and Cheng Zhang, who poured
countless hours into my personal development. I express great appreciation towards
my officemates who kept me motivated and on task. Thank you to those who take the
time to make their knowledge readily available to the world while asking nothing in
return; especially MIT OpenCourseware participants, iTunesU providers, participat-
ing universities of Coursera.com and other MOOCs. Their resources allowed me to
fill-in background knowledge gaps quickly and competently. I am especially gratefull
for the courses in fluid mechanics and computationsl fluid dynamics by Dr. Lorena
Barba of Boston University. Finally, thank you to Dr. John Burkardt for making

available code and notes from which to learn.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS e

LIST OF TABLES e

LIST OF FIGURES
CHAPTER

1 Introduction

1.1 The Navier-Stokes Equations

1.2 Function Space of the NSE

1.3 The Pressure Poisson Equation

1.4 Reformulation of the Pressure Poisson Equation

1.5 Final Stable Reformulation of the Pressure Poisson Equation . .

1.6 Equivalence of the PPE,

2 Galerkin Finite Element Method

2.1 Weak Formulation

2.2 Finite Element Approximation

2.3 The Choice of Element

2.4 Temporal Discretization

2.5 Nonlinear Solver

3 Numerical Experiment L.

3.1 Flow on a square domain

vil

Page

vi

1X

3.2 Results 25

4 Conclusions 35
4.1 Overview of Results 35

4.2 Conclusion 35
BIBLIOGRAPHY 37
A Matlab Code 40
B Survey on Analytic Solutions 85
B.1 Excerpts on Existence and Uniqueness 85

viil

LIST OF TABLES

Table Page
2.1 Coefficient matrices for the momentum equation. 15
2.2 Coefficient matrices for the pressure Poisson equation. 16

X

LIST OF FIGURES

Figure Page

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Linear and quadratic triangle elements. Figure (a) corresponds to linear
pressure elements and figure (b) corresponds to quadratic elements for
each component of the velocity. In all, for each triangle element there
are 15 degrees of freedom. L. 17

Flow on a square domain with no slip and no flux. The external force f
acts on the fluid. oo 24

The velocity field for the computed solutions (b) and (c¢) have the same
structure as the true solution (a). Comsol’s solution, however, is more
accurate. ... 26

The pressure field for the computed PPE solution (b) and the true
solution have the same structure. Comsol’s solution is completely

different, although the velocity field it produces is accurate. 28

Velocity error between the PPE formulation and the real solution at ¢ = 1,

Velocity error between Comsol v3.5.3 and the real solutionatt =1, v =1. 29

Velocity error between the PPE formulation and the real solution at ¢ = 1,
v=1. e 30

Velocity error between Comsol v3.5.3 and the real solution at t =1, v =1 30

The error [0 — u|lo. The squares (O) corresponds to the horizontal

velocity u while the circles (o) corresponds to the vertical velocity v. 31
The error [P — plloo- + « v v o o 31
The error [V -0 —0]|cor -« v v v v v v oo 32

3.11 The error || — u|loo. The squares () corresponds to the horizontal
velocity w while the circles (o) corresponds to the vertical velocity v.

The straight line corresponds to second order convergence. 33
3.12 Theerror ||p—plloce « « « v v o e e 34
3.13 Theerror [V -0 —0oo. -+« v v v 34

x1

CHAPTER 1
INTRODUCTION

Fluid mechanics is a large and important area of science and engineering due to the
many phenomena that fall under its umbrella. Computational fluid dynamics is an
influential branch that leads to breakthroughs in designs and general understanding
of how the world works. Modeling fluid behavior allows engineers to design the most
advanced aircraft and doctors to learn how their drugs move through the human
body. At the heart of fluid mechanics and its modeling are the fundamental equations,
the Navier-Stokes equations. The equations are known for over 150 years, yet their
behavior is still not fully understood. In this paper we examine a particular form of
the equations — the incompressible, isothermal Navier-Stokes equations for Newtonian
fluids.

Analytic solutions to the Navier-Stokes equations are difficult and few, except
for special cases, due to their nonlinear and coupled nature. Mathematicians and
physicists continue to search for the existence and uniqueness of analytic solutions
(for a brief survey see Appendix B1). Consequently, numerical methods are important
to the understanding of the behavior of Navier-Stokes. Though many numerical
methods exist, there are often trade-offs between accuracy and efficiency. Different
methods are developed for different physical phenomena modelled by the equations;
for example, some methods are useful for understanding incompressible fluids, such
as water, while others model compressible fluids, such as refrigerants.

We will look specifically at the Navier-Stokes with Pressure Poisson equations
(PPE). The PPE is derived from what is known as the primitive variable form, or
U-P form, of the equations. By using the PPE and determining the proper boundary
conditions we are able overcome the weak coupling between the velocity and the pres-

sure. This form then lends itself to efficient and accurate solvers, one of which we will

demonstrate. There are challenges in using this method, however. Implementing the
new boundary conditions proves to be much less straight forward than the primitive
variable form.

In the following sections we will introduce the primitive form of the incompress-
ible Navier-Stokes equations and discuss some of the current methods used to numer-
ically solve them. We then direct our attention towards the PPE and the derivation
of the Pressure Poisson equation. The question of what are the appropriate boundary
conditions for the PPE are asked (and adressed) time and time again over the years
(see, for example [3], [11], [22]) as this aspect of the PPE proves to be the most chal-
lenging part of the formulation. We consider the formulation by Johnston and Liu
[17] in our implementation. A modification introduced by Shirokoff and Rosales [23]
is added for stability. Following the proof by Johnston and Liu, the primitive form
and the PPE form are shown to be equivalent. We speak briefly about the Sobolev
space where the solutions exist before deriving the weak form of the PPE. Using this
weak form we are able to discretize the equations using Galerkin Finite Elements and

numerically solve a benchmark problem.

1.1 The Navier-Stokes Equations

Numerically solving the incompressible Navier-Stokes equations are challenging for a
variety of reasons. First is the nonlinear nature of the partial differential equations.
Especially for flows of high velocity or low viscosity, the equations can produce highly
unstable flows in the form of eddies. There is also the matter of the constraint imposed
by the incompressibility. Any algorithm must ensure a divergence-free flow field at
any given time during the calculation. This matter leads to the question of how to
recover the pressure from the velocity considering the equations do not provide any

boundary conditions for the pressure.

The MAC (Marker and Cell) Scheme is one of the oldest and most common
methods. It was introduced in 1965 by Harlow and Welch [10] to solve for time-
dependent viscous surface flows, but it continues to be updated. Projection methods
were developed in the 1960s and 1970s independently by Temam [26] and Chorin [1].
These method split the computation into multiple temporal steps by first solving for
velocity without regard to the incompressibility constraint, then projecting the veloc-
ity onto an incompressible velocity field via the PPE. Newer, second-order accurate
projection methods were developed and became popular. The projection method suf-
fers from numerical boundary layers, even for relatively stable flows, and is difficult
to implement with nonconforming boundaries. The penalty method is successful for
complicated domains, but it also introduces numerical boundary layers that reduce
accuracy and efficiency. We will utilize a method based on a PPE formulation of
the Navier-Stokes equations where the PPE replaces the incompressibility constraint
and provides explicit boundary conditions for the pressure. This method was first
introduced by Gresho and Sani [%], but this paper will utilize later work by Johnston
and Liu [17] and Shirokoff and Rosales [23], whose work allows for the direct and
efficient recovery of the pressure for a computed velocity. This method avoids the
problems of numerical boundary layers since incompressibility is enforced at all times
and pressure has its own explicit boundary conditions

The primitive variable, incompressible Navier-Stokes equations (NSE) on the

domain Q C R? (or R?) are given by

W+ (u-Vyu=pAu—-Vp+f (1.1a)
V-u=0 (1.1b)

where u (x, t) is the velocity, i is the kinematic viscosity, p (x,t) is the pressure,

f (x,t) are the body forces. We denote the gradient by V and the Laplacian by

A = V?. Equation 1.la is known as the momentum equation and (1.1b) is the
continuity equation, which is divergence free due to the incompressibility of the fluid
and may be thought more as a constraint rather than a full equation. The boundary

conditions for this formulation of the NSE are

u=g(x,t)forxeTl (1.2a)

/n .gdA =0 (1.2b)
T

where I' is the boundary, n is the unit normal vector on the domain boundary, and
dA is the area. Equation (1.2b) constitutes a global conservation of mass since the in-

compressible fluid must have zero net flux through the boundary. The above formulas

£

7 where

are in non-dimensional forms by letting the constant density p =1 and p =
Re is the Reynolds number (Re = %, U is the mean velocity, L is the characteristic
length, and v is the kinematic viscosity).

Remark: Using various identities, the advective term and viscous term may be
written in different forms. For example, we may write the viscous term in rotational
form using the identity Au = V(V-u) =V xV xu = -V x V x u due to the

divergence-free constraint. Likewise, the advective term is often written as (u- V)u =

u-Vu.

1.2 Function Space of the NSE

There is a lot of theory in the functional analysis of the partial derivatives in general
and the Navier-Stokes equations in particular. This paper’s focus is on the numerical
aspects of the equations rather than the analytical aspects, so only the minimum of
what is needed is provided below. The interested reader is directed to Temam [27],
whose work elucidated the following discussion.

The domain € is a compact supported open subset of R? where d = 2 or 3. Q is

Lipschitzian. By this we mean that its boundary I' can be locally represented by a
Lipschitz continuous function. Let v : R9~! — R be a function that satisfies the Lip-
schitz condition |y (y) — v (z)] < M |y — x|V x, y€ R¥"L. Then near every boundary
point x € I" there exists a neighborhood B such that QNB = {(z, z,,) € B|z, > v (z)}.
So I' is the graph of a Lipschitz function.

L? is the space of real valued functions. It possesses the inner product and norm

=

(h.g) = / h(e)g(@)de, k] = {hh)

Here we introduce Sobolev space as the space of solutions to the NSE. Sobolev
space, which is a Hilbert space, is used because it allows the weakening of the notion of
partial derivatives and thus permits functions that are less smooth. This is achieved
by shifting derivatives from differentiable functions to distributions by using smooth

test functions. Sobolev space possesses the inner product and norm

1
(h,g),, = Y (D"h,D%), 12]],,, = (R h)2,
[a]<m
where a=lay,..., an], @ €N, [OZ]ZZ%‘

olal
and D*=D...Do =
axll x%n

The subscript m represents the highest order derivative and « is called a multi-index.
Let D (2) be the set of infinitely differentiable functions with compact support in
and ¢ € D (). Then a distribution is ¢ : D (Q2) — R; that is, a continuous linear
map.

The particular Sobolev space of interest is H' (2), the set of L? functions satis-

fying

H Q) ={f: Q=R | |flly, <o}

with the inner product and norm

@) = / fa+ / (V) (Vo)
1L, = /U Do

H' () includes functions that are piecewise continuously differentiable.

1.3 The Pressure Poisson Equation

The pressure Poisson equation (PPE) is derived from the momentum equation. Be-
cause it is derived by taking the divergence of the momentum equation, it requires
that the solution be sufficiently smooth up to the boundary; that is, the solution
must be more smooth than would otherwise be required. It will be shown later that
the PPE is, for sufficiently smooth solutions, equivalent to the continuum NSE in the
non-steady case. For the steady case, [17] notes that equivalence is achieved when the
PPE is written without the viscosity term and a divergence free boundary condition
is enforced for the velocity. To achieve the pressure Poisson equation formulation, we

take the divergence of (1.1a) and use the divergence free condition (1.1b) such that
Vi(w+(u-V)u)=V- (pAu—-Vp+f)

Then on the left hand side we have

Vot e V)w) = O (V) £ V(e V)u= V(-)

While on the right hand side we have
V-(pAu—-Vp+f)=pA(V-u)—Ap+V -f=-Ap+ V- f
Then combining the new left hand side and right hand side we have

V- (u-Viu=-Ap+V-f

And rearranging terms

Ap=V-(f—(u-V)u) (1.3)

This gives the new system of equations

u+ (u-V)u=pAu—Vp+f for x € Q (1.4a)
Ap=V-(f—(u-V)u) for x € Q (1.4b)
V-u=0 forx el (1.4¢)
u=g(x,t) for x e I (1.4d)

1.4 Reformulation of the Pressure Poisson Equation

Can the flow velocity be used to obtain the pressure in the above PPE? This is a
question raised and addressed in [23]. The reason for concern is that at this point the
boundary conditions exist only for the velocity, so the pressure may not be determined
accurately. What are needed are boundary conditions for both the flow velocity and
the pressure that allow us to develop the velocity field in time for a given pressure
and then solve for the pressure at each fixed time given the velocity. This is achieved
by (i) specifying the normal derivative of the normal velocity through the divergence

condition and (ii) requiring that the new pressure boundary condition be equivalent

to (n-(u—g)), =0 for x € I' [23]. The new system of equations is then
w+(u-Viju=pAu—-Vp+f forxe (1.5a)
nx(u—g)=0 forxel (1.5b)
V-u=0 forx el (1.5¢)
and
Ap=V-(f—(u-V)u) for x € Q (1.6a)

n-Vp=n-(f-g +pAu—(u-V)u) forx el (1.6b)

where n is the unit vector normal to I'. We require €2 to be a convex polygon or

polyhedron or I' to be smooth.

1.5 Final Stable Reformulation of the Pressure Poisson Equation

The author of [23] demonstrates that the boundary conditions in (1.5) and (1.6)
indeed recover the normal velocity boundary condition n-u = n - g by showing that
(n-(u—g)), =0 for x € I'. However, the author continues that numericals error
from the implementation of (1.5) and (1.6) result in a drift of the normal component
velocity, which can have a destabilizing effect on the behavior of a numerical scheme.
The author proposes adding a stabilizing term to the boundary condition of the
PPE to make the equations suitable for numerical implementation while maintaining

equivalence to (1.1):

u; + (u-V)u=pAu—Vp+f for x € Q (1.7a)
nx(u—g)=0 forxel (1.7b)
V-u=0 forxel (1.7¢)

and
Ap=V-(f—(u-V)u) for x € Q (1.8a)

n-Vp=n-f-g +pAu—(u-V)u)+An-(u—g) forx el (1.8b)

where 10 < A < 100 is a parameter that must be determined by numerical experi-
mentation. Thus the potentially destabilizing error is corrected by using the PPE to

enforce the boundary condition n-u=n-g

1.6 Equivalence of the PPE

Below we present a proof from [17] of the equivalence of the PPE formulation (1.4)

to the primitive form of the Navier-Stokes equations. Work by Gresho and Sani

in [3] and [22] show various forms of the PPE formulation with different boundary

conditions and their equivalence to the u-p formulation.

Theorem 1.6.1. Assume f € L>* ([0,T],H®),s > 1/2.
For u € L>*([0,T],H*™)(Lip([0,T], H®) the formulation of the Navier Stokes

equations is equivalent to the PPE formulation (1.7)-(1.8).

Proof. It has been shown by previous authors that the system expressed in equations
(1.4a)-(1.4d) are equivalent to the Navier-Stokes equations (1.1a)-(1.2b). We have
already shown that the solution to (1.1a)-(1.2b) satisfies the PPE. As presented in
[17], we show the solution (u,p) to (1.4a)-(1.4d) satisfies the Navier-Stokes equations.

We take the divergence of (1.1a) to obtain
% (V-u)+V-(u-Vu)+Ap=pA(V-u)+V-f.

Using the identity V - (u- Vu) = Vu : Vu — (u- V)? in equation (1.4b) and substi-

tuting into the above equation we arrive at
9 (V-u)+V-(u-Vu)—Vu:Vu+ (u-V)?>+V-f=pA(V-u)+V-f.
Cancelling terms we have
% (V-u)+V-(u-Vu)—Vu:Vu+ (u-V)’=pA(V-u).
We now use the identity V- (u-Vu) = Vu: Vu+u-V (V- u) to achieve
9 (V-u)+Vu:Vu+u-V(V-u)—Vu: Vu+ (u-V)’ =pA(V-u).
We cancel terms and denote ¢ = V - u. We then have
Op+u-Vo+ ¢* = uA¢ (1.9)

with initial data ¢|;—o = 0. Next we use the identity Au=V (V-u) -V xV x u to

rewrite (1.4a) in the rotational form of

w+(u-Vu+Vp=—puVxVxu+uV(V-u)+f.

10

As in [17], we take the normal component of the trace and use u|r = 0 to get
n-p=—un-VxVxu+um-V(V-u)+n-f

on the boundary I'. Comparing the above equation with (1.6b), we have

0
a—ﬁ:n-V(V-u):O.
Continuing with the proof from [17], we show using energy estimates that ¢ equals

zero almost everywhere. First, multiply (1.9) by ¢ and integrate over 2 to obtain

G Lo [wvers [o=

Integration by parts of the second term gives

[over-—-[@ we--[s

So, the second and third terms cancel to yield
d 2 2
— =0
7 /Q ¢+ p /Q Il
/(bQ:Ofort:O.
Q

fioe

for all t > 0. Therefore, ¢ = u-V = 0 almost everywhere, which proves that (u,p) is

with the initial conditions

Therefore,

a solution to the incompressible NSE. O

CHAPTER 2
GALERKIN FINITE ELEMENT METHOD

Several tools are available when choosing how to discretize the Navier-Stokes problem.
The three broad choices are the finite element method, finite difference method, and
the finite volume method. Each of these has its own strength and weakness. The finite
difference method has the benefit of being relatively easy to implement. However, it is
not well suited for complex geometries and suffers from poor stability and convergence
analysis. The finite volume method is based on physical conservation properties, but
it too is difficult to analyze for stability and convergence and it is poorly suited for
unstructured meshes. The finite element method, the choice for this study, is able to
achieve a high degree of accuracy, is well suited for complex geometries, and facilitates
rigorous error analysis [21].

In this chapter we derive the weak formulation of the Navier-Stokes equation
with PPE. We then make our choice of element and test function and use the weak

form to discretize our equations.

2.1 Weak Formulation

We rewrite equations (1.5a) and (1.6) in their weak form in a manner similar to that
found in [17]. First we define an inner product (-, -) by (f,g) = f_ll f(z)g(x)dx. For
our weak form of the momentum equation we have for all smooth test functions v

with ¢|r = 0 find u such that

(w, V) + (u-Vu,v)q + (Vp,ih)g = p{Au, ¢)g + (£, 4)q . (2.1)

For the diffusion term Au we lower the order of the derivative through integration by

parts and using the fact that ¢)|r = 0. This leads to the final momentum equation

<uta ¢>Q + <u . Vua ¢>Q + <VP7 ¢>Q = _:u <V11, VQ/J>Q + <f7 w>Q . (22)

12
For the PPE use the smooth test function ¢ to obtain the weak form
(Ap, §)g = — (V- (u- V) u),6)q + (V- £,) (2.32)
(n-Vp, @)p = (- (f—bfg + pAu—(u-V)u),¢)p + (An- (u—-g),¢)p (2.3b)
By integrating by parts the left side of (2.3a) we have
(Ap,d)g = (n-Vp,¢)p — (VD, V), . (2.4)

We make use of the boundary condition given by (2.3b) and substitute into (2.4) and
make use of the identity V x V xu =V (V-u) — Au= —Au since (V-u)|r =0

yielding
(- Vp, ¢)p —(Vp,Vo)g = (n-f,¢)p — (n- g, @)p +p(n- (VX V xu),¢)p—
mn-(u-Viu,¢)p+ M- (u—-g),0)r — (Vp,Vo)g. (2.5)
We apply the vector identity

- (VxVxu),d)p=(VxVxuVe,=—(Vxunx V),
to give
(Ap,¢)g=(n-f,0)p — (08, ¢)r — n(V xu,nx Vo) —
(0 (u-V)u,é)p+ (An- (u—g), o) — (Vp,Vd),. (2.6)
Now, for the right side of (2.3a) we use integration by parts to achieve
—(V-((u-V)u),¢)q+(V-f,0)g = ((u-V)u,V)o— (£, Vo)g+ -, ¢)p. (2.7)

Finally, we set (2.6) equal to (2.7), cancel similar terms, realize the incompressibility

constraint u - V|r = 0 and rearrange to arrive at

<VP7 V¢>Q = - <(u ’ v) u, v¢>Q + <f7 V¢>Q - <n - 8¢, ¢>I‘ -

;L(Vxu,nxV¢)F+()\n-(u—g),¢>F. (28)

13

Per [17], we take X = {¢ € (HE ()?,(V x u)|r € L2 (D)}and Y = {¢ € H' (Q) /C, (n x V) |p €
L*(T)} to give the full variational formulation:

If T is smooth or if Q is a convex polygon or polyhedron find u € L? (0,7; X) and p

€ L?(0,7T;Y) such that

(u, V), + (u-Vu,¥), + (Vp,) = = (Vu, Vo), + (£,9)q , (2.9)

(Vp,Vo)g=(f—(u-V)u,Vo)o+ (M- (u—g)—n-g,¢)r—pn(VxunxVe),,
(2.10)
is satisfied Vi) € X and V¢ € Y a.e. in (0,T).

2.2 Finite Element Approximation

To develop our finite element discretization, we use the weak form previously devel-
oped in the appropriate function space with piecewise continuous polynomials from a
trial space. For the two-dimensional case there are two common element types from
which to choose: triangular elements and quadrilateral elements. The next task is to
describe each matrix in terms of the test functions and summarize the equations in
semi-discrete form, postponing briefly the discretization in time.
Let {¢1, 12, ..., 1} be a basis for the velocity shape functions and let

{¢1, b2, ..., dm} be the basis for the pressure shape functions. A benefit of using
the Galerkin method is that our trial functions and test functions are the same. The

velocity and pressure approximations are then uniquely represented by the expansions

Un = Z’Uﬂ/fj’ Unh = Z’Uj%, and pp = ZP;’%’-
j=1 j=1 j=1

The finite element forms for the momentum equation in the x-direction and y-direction

14

are
duh 8uh 8ph 8uh 81& 8uh 31/1 /
[[wGperutor [P ooy [TR TR [y
(2.11a)
d ov 0 0 Oy, 0 Ovy, 0
[Gror [wGroruios [Fro—p [FRSEL SR gy
(91: (99(: 8y 8y
(2.11b)
The finite element form for the PPE is
aph 8¢ 3ph 3¢ / f f op
8:15 8:6 8y 8y Yor T 7%0
8uh 8¢ (9uh 8gb 8vh 8(;5 (%h a¢
/Q“"a:c 8x+ dy (‘3x+ ox (9y—|r h@y oy
[2000, 0000 0000 0o
'upm(?xﬁy Y 0x Ox Y 0y Ox 0y Oy
/)\n-(uh+vh—g)¢—n-gtq5 (2.12)
r
Equations (2.11) can be written in a matrix form as
M 0 U N (u)+vD u By F
+ + p=
0 M v N <U) +vD (% B2 F2
(2.13)

where M, N, D, B, and F' are defined in Table 2.1. This leads to the compact form
of
[M]U + [K (u)] U + [B] P = [F], (2.14)

where K (u) is the sum of the convective and diffusive terms. The PPE is a little
more complicated since it involves tangential derivatives and terms that appear only

on the boundary. In compact form we can write
[Mplp = [Ki]u+ [Ko]o+ Fs — Ag (2.15)

where K7 = T; (u) + vLy; + AS; and Ky = Ts (u) + vLy + ASs with each matrix and

vector defined in Table 2.2.

15

Abbreviation Formula Representation
M Jo Vit Mass Matrix
D 0 %% + %_@z;%i; Diffusion
N (u) Jo withi %ﬁ" v+ viwi%wj Convection
By and B, o 2y and %‘Zi Y; | Pressure Gradient
F) and Fy fQ f1i; and fQ f2i; External Force

Table 2.1: Coefficient matrices for the momentum equation.

2.3 The Choice of Element

There exist many choices with regard to the type of element to be used. To begin
with, there is the question of equal order elements versus mixed elements, which
refers to whether the interpolating functions for pressure and velocity are of equal
order or are different. Because the diffusion operator for velocity is of higher order
than the gradient operator for the pressure, mixed elements where the velocity is
at least one order higher than the pressure are popular choices that typically lead to
stable elements provided that the pressure interpolant is at least linear. Other element
choices that are not inherently stable can be made so by adding stabilizing terms,
but this can lead to inaccurate solutions. When we speak of stable element pairs,
we are referring to the Ladyzhenskaya (1969), Babuska (1971), and Brezzi (1974)
compatibility condition, also known as the LBB or inf-sup condition, that says that
the existence of a stable finite element approximate solution to the steady Stokes
problem depends on choosing a pair of spaces V" and Q" such that the following
condition holds:

h AV Wh
inf sup M >a>0 (2.16)
€@ weyn ||qlo][W"|l1

16

Abbreviation Formula Representation
Mp 0 %ﬁi % + %% Laplacian for pressure
T (u) fQ u; i%% + vi@bi%% Convection
Ty (u) Jo withi %ﬁ" %j + vy %ﬁ" a@i; Convection
Ly I8 <—nx% + ny%j) %ﬁi Diffusive term
Lo Jr (nx%j — ny%) % Diffusive term
S1 & Sy Jonatbid; and [nyibid; Stability Term
g fp (e Gui + My Gui) @; Stability Term
Fy fQ fli% + fziaai; External Force

Table 2.2: Coefficient matrices for the pressure Poisson equation.

where « is independent of mesh size h. Proving that a mixed element pair satisfies
the LBB condition is not simple, and there are many techniques to do so. This thesis
will not delve into these details, but the interested reader may consult Girault and
Raviart [7].

The next consideration is the shape of element. For the two-dimensional case
we have the triangular and quadrilateral elements, which can also be mixed (e.g.
quadratic quadrilateral for the velocity and linear triangle for the pressure). Quadri-
lateral elements are generally easier to implement, but they are not as flexible with
respect to complex geometry. Triangular elements, on the other hand, provide better
meshes for complex geometries. See [9] for a detailed discussion on element choices.

We will use Taylor-Hood[25] triangle elements with quadratic interpolation for
the velocity and linear interpolation for the pressure. These elements are denoted as
P,P,. Ervin and Jenkins prove the LBB condition for this element pair in [0]. As

well as being stable, these elements also converge quadratically. Each component of

17

velocity will be characterized by 6 nodes while pressure will be characterized by 3

nodes (see figure 2.1). Our approximations for velocity and pressure are then

6

6 3
Up (x7y7t) = Zu]wja Up (.’E,y,t) = Zvj¢j7 and Pn (xhy) = Zp3¢3
j=1 j=1

J=1

(2.17)

(a) (b)

Figure 2.1: Linear and quadratic triangle elements. Figure (a) corresponds to linear
pressure elements and figure (b) corresponds to quadratic elements for each compo-

nent of the velocity. In all, for each triangle element there are 15 degrees of freedom.

For each element there will be 15 unknowns — six each for the two components of
velocity and three for pressure. We make use of Lagrange isoparametric interpolating
functions. The six shape functions for the velocity over the reference element, denoted
by @ , and three shape functions for the pressure over the reference element, denoted

by gg, are given by

W (&) 1 — 3¢ — 3+ 262 + 4¢n + 21
W2 (&) —£ +2¢?
1%3 &n) | _ —n +21° (2.18)
i (&) 46 — 4fn — 482
s (€,m) 4n — 4&n — 4n?
| deem) || 4€1) |

18

and
é1(&,m) 1-¢—n
b2 (&) | = ¢ (2.19)
Qg3 (57 77) n

The mapping from an arbitrary triangular element with vertices (x;,v;), 1 < i < 6,

to a reference element with vertices

(517771) = (070)7 (527772) = (170)7 (537773) = (07 1)7
(§a,m4) = (%70) , (&,m5) = (%v %) , (6,m6) = (O, %)

is given by
6 6
v (&n) =) v y(&m) =)ty
j=1 j=1
The shape (and test) functions v (z,y) and ¢ (x,y) over the physical triangle are
defined as
V() =0 (E(y)n(zy) ¢@y)=oE(ry),n(y). (2.20)

The Jacobian is computed by taking the derivatives of = (£,7) and y (§,n) above to

get
Ox @

_ | 9¢ o
T o
on 0On

The derivative operator is then expressed as

0 0
9r | _ 1| o€
Y= G
dy on

19

2.4 Temporal Discretization

Typical of time-dependent problems is first the discretization with respect to space.
The semi-discrete equations are then integrated forward in time by some method.
This strategy is known as the method of lines, and is well suited for linear equations
(e.g. Stokes equations). For nonlinear equations, the preference is to discretize in
time, then space [5]. In keeping in the spirit of [17] and [23], we already made our
choice to use the method of lines as is common practice.

There are many choices for time discretization, so we choose to discuss one class

— the so-called #-methods.

[M + 0AtK (u)"Ju" 4+ Bp" =

[M — (1 —0) ALK (w)" ' Ju"™ + 0AH" + (1 — 0) At~ (2.21)

The special cases are first-order explicit forward Euler (6 = 0), first-order implicit
backward Euler (6 = 1), and second-order implicit Crank-Nicolson (6’ = %) . Asis well
known, the forward Euler method is the easiest to implement, but is the least stable.
Backward Euler is strongly A-stable (smooths oscillations), but is highly dissipative
and therefore is not well suited for unsteady problems. The Crank-Nicolson scheme
is popular due to its mix of stability and second-order convergence, but it can suffer
from unexpected instabilities. Following the discussion presented in [23], we discuss

the stability of a second-order Crank-Nicolson scheme where pressure is treated with

20

a second-order Adams-Bashforth extrapolation:

u"tl —u" = vAt (Au“Jrl + Au”)

Lt — rel (222D
O at — 0 zel (2.22)
Ap=—-V-(u"™ vu") + V. reQ (2.22d)
ag:l =—vn- (VxVxu*)+n- zel (2.22¢)

This method is suitable for low Reynolds numbers (viscous flow) where we treat
vAu implicitly . Normal mode analysis shows that the eigenvalues of the time step-
ping operator lie within the unit circle [24], indicating that the normal modes @
(defined as u™ = ou where u satisfies (2.22b) and (2.22¢) and « is an eigenvalue of
the time-stepping operator) remains bounded for the scheme. Therefore the scheme
is stable for simple domains.

If the Reynolds number is large, treating the viscous term implicitly does not
stabilize the solution. For convective flows an explicit method is used. Johnston and
Liu note that a convectively stable scheme, such as Runge-Kutta 4 (RK4), should be
used. RK4 is a satisfactory choice since its stable region encompasses a large portion
of the imaginary access. However, the price is paid in terms of computational costs.
For a thorough discussion on the many time-stepping schemes in computational fluid
mechanics, see [25].

In addition to the scheme, another important consideration for any time-dependent
algorithm is the time step itself. Diffusive problems, such as the Stokes equation, re-
quire smaller time steps than convective flows. Ideally, the most robust algorithm
is able to incorporate adaptive time stepping to maximize efficiency in accuracy and

computational cost. Johnston and Liu present in [I7] Reynolds-dependent stability

21

constraints that determine what time step should be considered in conjunction with

the time discretization:

vAt 1

Diffusive stability constraint A2 < 5 (2.23)
At

Convective stability constraint HuHooA_ =CFL<1 (2.24)
x

where Ax is the smallest grid resolution, d is the dimension, and CFL is the Courant-

Friedrichs-Lewy necessary condition for convergence used for explicit schemes.

2.5 Nonlinear Solver

One of the challenges of the Navier-Stokes equations revolves around their nonlin-
earity. Two common ways to approach the problem are through Newton-Raphson
iterations and Picard iterations. The Picard iteration converges linearly, but its ra-
dius of convergence is much larger than that of the Newton method and therefore does
not require a good initial guess. The well-known Newton iteration converges quadrat-
ically, but requires a good starting point to achieve convergence. The method in its
pure form also suffers from the requirement to update the Jacobian every iteration.
This requirement can be circumvented by, for example, updating the Jacobian per-
haps only once or every few terms at the expense of less-than-quadratic convergence.
To prepare our formulation for the Newton iteration, we neglect the time derivative

term to give
[K (w)]u+[G]p=T{. (2.25)
We search for a fixed point by solving for the residual:
R(u)=[K (u)jlu+[G]p—-f=0. (2.26)

The truncated Taylor series expansion of R (u) about the known solution u™ is

0=R(u") + agl(IU) Au+ O (u?) (2.27)

22

where Au = u"™! —u". Omitting O (u?) and rearranging we have

R(u") = — Au = —J (u") Au, (2.28)
where J (u™) is the Jacobian. Again rearranging we obtain
Au=—J ' (u")R(u"). (2.29)

It is clear that our residual R (u") is simply the momentum equation set to 0
while neglecting the time derivative. The Jacobian is then the derivative of R (u) with

respect to u, meaning the pressure disappears. The Jacobian in GFEM notation is

() (B (5)) e
Jlgz/g%—z@z) (2.30b)
Jan :A¢g—z¢ (2.30c)
I= [(W20 2 [((g;f) . (g_gy) 2300

Substituting (2.29) back into the momentum equation we obtain the expression
Mu; + JAu = R. We can then utilize a time discretization to iterate with Newton-

Raphson. For example, if we use the backward Euler method, we would have

Au=—At(M+AtJ)"'R

"t =u" + Au.

CHAPTER 3
NUMERICAL EXPERIMENT

In this chapter we test our variational form. We consider the linearized Navier-Stokes
since the problems that arise are not connected to the nonlinear advective term. The

linearized Navier-Stokes equations, or Stokes equations, have the form

Cf;; =Au—-Vp+f for z€Q (3.1)
u=20 for z €l (3.2)
Ap=V-f for z€Q (3.3)
n-Vp:n-—l/(Vxqu)—n-fl—% for z €T (3.4)

Our weak form is then: Find u € L? (0,7; X) and p € L?(0,T;Y) such that

(u, V) +(Vp,¥)g = —p(Vu, Vi) + (£, 4)g (3.5)
(Vp,Vo)g =+ (An-(u—g)—n-g,o)pr—pu(VxunxVer,. (3.6)

Using our shape functions from (2.20) and approximations (2.17), we discretize

our domain using finite elements and integrate using fifth-order, 7-point Gauss quadra-

ture.
duh 8ph 8uh aw 8uh (91#
|G [——u [Gr e [h (3.72)
dvh 8ph c%h 877/1 8’Uh 61/)
|G [R ax T R (3.7b)
3}% 3925 pn 3¢ v, Ouy, O¢ o¢
o 0z 0z Oy oy /fl +f2 “/F<a_x_a_y) ("xa_y_”ya_x)
/F)\(nxuh—i—ny Up—n-g)o—n- g (3.7¢)

3.1 Flow on a square domain

We will solve the linear Navier-Stokes equation on the unit square 0 < z,y < 1 with

no slip and no flux boundary conditions (u = v = 0) and viscosity ¥ = 1. We use u

24

(0.1) u=v=0 (1.1)

u=v=0 u=v=0

p=0. X
(0.0) u=v=0 (L0)

Figure 3.1: Flow on a square domain with no slip and no flux. The external force f

acts on the fluid.

and v of the exact solution given below at ¢ = 0 as our initial velocity.

u(z,y,t) = 7 cos (t) sin (2my) sin® (7) (3.8a)
v(w,y,t) = —7 cos (t) sin (27x) sin” (y) (3.8b)
p(z,y,t) = — cos (t) cos (rx) sin (1y) . (3.8¢)

The forcing function is f = u;+Vp—rAu. The finite element x and y components

of the forcing function is

fo = — msin (t) sin (27y) sin® (7x) + 7 cos (¢) sin (7z) sin (7y)
— 2% cos (t) sin (2my) (cos® (7)) — sin® (7)) + 47> cos (¢) sin (2my) sin® (7z)
(3.9a)
fy, = msin (¢) sin (27z) sin® (7y) — 7 cos (t) cos (7x) cos (ry)
+ 27° cos (t) sin (2mz) (cos® (ry) — sin® (7y)) — 47 cos (t) sin (27z) sin® (7y)
(3.9b)

As noted earlier, we choose mixed finite elements using Taylor-Hood triangles
with the velocity discretized using quadratic, piecewise continuous Lagrange polyno-

mials and the pressure discretized using linear, piecewise continuous Lagrange poly-

25

nomials. The approximation spaces X and Y are taken to be

X = span {1 (2, y) 2 (2,), 03 (2,y) .- U (2,9)}
Y = span {1 (z,y), 2 (z,y), 03 (2, y), ... om (2,y)}

For (U™, V", P") € X x X x tildeY we have the discrete solutions

6 6 3
=Y @, V=Y 0, PU= ple: (3.10)

i=1 i=1 i=1
To solve this problem we first set up our momentum equation coefficient matrices
M, D, By, By, Fi, and F; as prescribed in table (2.1). After discretizing spatially,
we use a semi-implicit temporal discretization. In this case we choose a second-order

Crank-Nicholson scheme where the pressure is treated with a second order Adams-

Bashforth extrapolation according to [17] and [23]. The procedure is then:

U"+1 " apn 1 apn !

=——<V (U”“+U”) Vo) + (FTe) (311
AR 3 /OP" 1 /oprt
) () s e
=~ (V (Vv V) + (Fy* ¢> (3.11b)
%)
(VP Vo) = <F1”“, a—ﬁ> + <F2”“, a_j> +
V<6Vn+1 aUn+1 8¢ 8¢>

Ox oy ’”ma_y ~"or

(3.11c)

3.2 Results

For our first test we use a 1477-element, unstructured, non-uniform mesh generated
by Comsol (version 3.5) and compare the results produced by the PPE formulation
and Comsol to the real solutions of (3.8a)-(3.8¢). Comsol uses a pressure correction

scheme to solve the equations. Comsol is set to use the same P2-P1 elements we use

26

and all of the stabilization options are turned off. The time increment for the PPE
is At = .8Ax = while Comsol uses adaptive time-stepping. Both models set the first
pressure node to zero and are run until ¢ = 1. Figure 3.4 shows moderate velocity
accuracy for the PPE, while Comsol’s accuracy is an order better and is on par with
the results achieved in [23] using an 80 x 80 grid with finite difference and the same
time-stepping scheme. However, analysis of the pressure shows superior recovery by

the PPE formulation over Comsol, though still not as accurate as seen in [23].

X

(a) Velocity profile of the true solution at ¢t =1, v = 1.

1

0.8

0.2

E ®

(b) Velocity profile computed with PPE. (c) Velocity profile computed with Comsol.

Figure 3.2: The velocity field for the computed solutions (b) and (c) have the same

structure as the true solution (a). Comsol’s solution, however, is more accurate.

27

Next, we look at the errors produced for different grid sizes and different At to
verify the second order convergence of the finite element discretization and Crank-
Nicholson/Adams-Bashforth scheme. We first varied the mesh sizes from 32 elements
to 1800 elements while evolving the solutions from t = 0 to t = 1 for At = Ax?.
Figures 3.8 and 3.9 show that in meshes of less than 200 elements we see quadratic
convergence, but for finer meshes other errors, such as those from the temporal dis-
cretization, become comparable. The error in pressure for all mesh sizes are unfavor-
able, but it is interesting to note that the error for the structured mesh of 1800 is
greater than the error of the unstructured mesh of 1477. Figure 3.10 shows a steadily
improving level of divergence-free flow for finer meshes, though at least a level of 10~*
is sought.

We now illustrate the second order accuracy of the Crank-Nicholson/Adams-
Bashforth scheme by varying At while fixing the mesh size to 1800 elements and
v = 1. Figure 3.11 shows that the scheme is second order up to At = Az = .03,
when the spatial and temporal errors become comparable. Figures 3.12 and Figure
3.13 show that neither the error in pressure nor the error from the divergence-free

condition improve appreciably with decreasing At.

28

iy
, i
it
e % rtryie e,
S
ST A
e PRy gy LR

oSBT 0
i et tar A

st

i1
)

pressure

T
= Ceh
S
S Gt
RS 5
S

Lk
ittty o
S Sy
Lt
i
oy

SRt
R A

pressure

A,
gttty
AT
AL
Sty i e
L TR AR
e e M R e
e BBl S e
G sy
A \\:\\\“‘ 2

pressure

PR
syt
g

(b) Pressure computed with PPE. (c) Pressure computed with Comsol.

Figure 3.3: The pressure field for the computed PPE solution (b) and the true solution
have the same structure. Comsol’s solution is completely different, although the

velocity field it produces is accurate.

29

S
YR TR
: e, st e,

: e L s

I NN ety e S e
> \‘ﬁﬁ“‘ﬁg\\ 5 2 *y‘\%\t‘{‘t‘\ﬁ“‘t‘\?\“}‘\\\\\ﬁ\\
i o ;

2 Y

) o
SN

5 5 3

S et i
R

\\\\‘\"\‘ 3

error (u)

Figure 3.4: Velocity error between the PPE formulation and the real solution at ¢t = 1,

v =1.

ilé‘i‘ P

AR
ity

s
el

error (u)

il

Gy

Figure 3.5: Velocity error between Comsol v3.5.3 and the real solutionat ¢t = 1, v = 1.

30

Figure 3.6: Velocity error between the PPE formulation and the real solution at ¢t = 1,

v =1.

il'
S ORI
e i -“\“““‘““‘**f"‘#'
= ! AN “‘ S i
2 2 : NS
E "

Figure 3.7: Velocity error between Comsol v3.5.3 and the real solution at t =1, v =1

31

0.18 T T T T T T T T

error (u,v)

—
= =

m
==

I] 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
mesh size

Figure 3.8: The error ||t — u|lw. The squares () corresponds to the horizontal

velocity u while the circles (o) corresponds to the vertical velocity v.

1.6

1.5

error (p)
— — —
fad Lo =

-
-

09

l].B 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

mesh size

Figure 3.9: The error ||p — p||oo-

error (y.u)

10

-
=

-
=

10

o

do

0

1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400
mesh size

Figure 3.10: The error |V -0 — 0||o.

1
1600

1600

32

33

10° : :

=t

error {u,v)
—
=

-"]' L Ll L PR T B BT | ' PR SR S Y A
10° 10° 10 10’

Figure 3.11: The error || — ul|o. The squares () corresponds to the horizontal
velocity uw while the circles (o) corresponds to the vertical velocity v. The straight

line corresponds to second order convergence.

error (p)
=
=

error {y.uj

0.94

0.93

0.92 -

0.89

0.88

10°

10 10 10
At

Figure 3.12: The error ||p — p||oo-

Figure 3.13: The error ||V -0 — 0| .

34

CHAPTER 4
CONCLUSIONS

4.1 Overview of Results

As was expected, the implementation of the boundary conditions for the PPE proved
to be the most difficult aspect of the formulation. Results showed moderate accuracy
for the velocity at reasonably small meshes and times steps. However, compared to
the implementation by Shirokoff and the results produced by Comsol, this method’s
accuracy fell short of its goal of 1074,

The accuracy for the pressure, again, fell short of the results produced by Shi-
rokoff. However, the results computed far exceeded the results produced by Comsol.
Since the same meshes were used and the same pressure node was set to zero, it is
likely that the discrepancy is in the pressure correction method used by Comsol.

The finite element method was shown to be second order for the element chosen,
which was in line with expectations. The Crank-Nicholson/Adams-Bashforth scheme

was also shown to be second order until At ~ Ax.

4.2 Conclusion

The method demonstrated in the example clearly has promise, but just as clear is
its need for some stabilizing term. Prior to this example, and omitted from this
paper, was conducted a simulation of the lid driven cavity. The results in that case
showed a similar phenomena with a distorted pressure with moderate accuracy in
the velocity. The precise nature of the error is yet to be studied, but would be a
worthwhile endeavor.

Personal correspondence with Shirokoff (over discussion of his work [23]) has

enlightened us to a way forward; enforcing the no-flux and no-slip boundary con-

36

ditions indirectly by having the tangential velocity at the boundary approach zero
(n x u = 0) in the momentum equation. In his method, this (along with V-u = 0 on
the boundary in the momentum equation) is precisely his approach. The challenge
for the GFEM is how to include these additional boundary conditions. By using
rotational form, V- u = 0 is known to be satisfied for all time. If (n x u = 0) can be
satisfied, it accounts for the no-slip condition, but the no-flux condition remains. The
stabilizing term, which is added to the PPE, is meant to address the associated errors
from the numerical errors. We have not yet had success employing this approach, but

it remains for future work.

37

BIBLIOGRAPHY

[1] Bourgain, J. ; Pavlovi, N. lll-posedness of the NavierStokes equations in a critical
space in 3D, J. Func. Anal. 255 (2008) 2233-2247.

2] Brezzi, F.; Fortin, F. Mized and Hybrid Finite Element Methods. (1991) Springer-
Verlag, New York.

[3] Burkhardt, J. Steady incompressible Navier Stokes equations in 2D finite element
solution banded storage, http://people.sc.fsu.edu/~jburkardt/m_src/fem2d_
navier_stokes/fem2d_navier_stokes.html, accessed on 12/12/2012.

[4] Chorin, A.J. Numerical solution of the Navier-Stokes equations, Math. Comp. 22
(1968), 745-762.

[5] Donea, J.; Huerta, A. Finite element methods for flow problems. (2003) Wiley,
London.

6] Ervin, V.J.; Jenkins, E.-W. The LBB condition for the Taylor-Hood P2-P1 and
Scott-Vogelius P2-discP1 element pairs in 2-D, Technical Report TR2011_.04_EJ,
Clemson University,(2011).

[7] Girault, V.; Raviart, P.-A. Finite element methods for Navier-Stokes equations.
Theory and algorithms. (1987) Springer-Verlag, Berlin.

[8] Gresho, P.M.; Sani, R.L. On pressure boundary conditions for the incompressible
Navier-Stokes equations, Int. J. Numer. Methods Fluids 7 (1987), 1111-1145.

[9] Gresho, P.M.; Sani, R.L.; Engelman, M.S. Incompressible flow and the finite ele-

ment method : advection-diffusion and isothermal laminar flow. (1999) Wiley.

[10] Harlow, F.H.; Welch, J.E. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with free surface, Phys. of Fluids 8 (1965), 2182-2189.

[11] Hassanzadeh, S.; Sonnad, V.; Foresti, S. Finite element implementation of bound-
ary conditions for the pressure Poisson equation of incompressible flow, Int. J.
Numer. Methods Fluids 18 (1994), 1009-1019.

http://people.sc.fsu.edu/~jburkardt/m_src/fem2d_navier_stokes/fem2d_navier_stokes.html
http://people.sc.fsu.edu/~jburkardt/m_src/fem2d_navier_stokes/fem2d_navier_stokes.html

38

[12] Heinrich, J.C. ; Vionnet, C.A. The penalty method for the Navier-Stokes equa-
tions, Arch. Comp. Meth. Eng. 2 (1995) 51-65.

[13] Hopf, E. Uber die anfang swetaufgabe fir die hydrodynamischer grundgleichun-
gan, Math. Nach. 4 (1951) 213-231.

[14] Jia, H.; Sverdk, V. Local-in-space estimates near initial time for weak solutions
of the Navier-Stokes equations and forward self-similar solutions, arXiv:1204.0529
(2012).

[15] Jia, H.; Sverdk, V. On scale-invariant solutions of the Navier-Stokes equations,
Proc. 6ECM (2012).

[16] Johnston, H.; Liu, J.-G. Finite difference schemes for incompressible flow based
on local pressure boundary conditions, J. Comput. Phys. 180 (2002), no. 1, 120-154.

[17] Johnston, H.; Liu, J.-G. Accurate, stable, and efficient Navier-Stokes solvers
based on explicit treatment of the pressure term, J. Comput. Phys. 199 (2004), no.
1, 221-259.

[18] Koch, H. ; Tataru, D. Well-posedness for the Navier-Stokes equations, Adv.
Math. 157 (2001) Krakow.

[19] Ladyzhenskaya, O. The mathematical theory of viscous incompressible flow.
(1969) Gordon and Breach, New York.

[20] Leray, J. Sur le mouvement d’um liquide visqieuz emlissant ’space, Acta Math.
63 (1934) 193-248.

[21] Rannacher, R. Finite element methods for the incompressible Navier-Stokes equa-
tions, Fund. Dir. Math. Fluid Mech. (2000) 191-293.

[22] Sani, R.L.; Shen, J.; Pironneau, O.; Gresho, P.M. Pressure boundary condi-
tion for the time-dependent incompressible Navier-Stokes equations, Int. J. Numer.
Methods Fluids 50 (2006), 673-682.

[23] Shirkoff, D.; Rosales, R. R. An efficient method for the incompressible Navier-
Stokes equations on irreqular domains with no-slip boundary conditions, high order
up to the boundary, J. Comput. Phys. 230 (2011), no. 23, 8619-8646.

39

[24] Strikwerda, J.C. Finite difference schemes and partial differential equations.
(1989) Wiley.

[25] Taylor, C.; Hood, P. A numerical solution of the Navier-Stokes equations using
the finite element technique, Comp. and Fluids 1 (1973), 73-100.

[26] Temam, R. Sur lapprozimation de la solution des equations de Navier-Stokes par
la methode des fractionnarires 11, Arch. Rational Mech. Anal. 33 (1969), 377-385.

[27) Temam, R. Nawvier-Stokes equations and nonlinear functional analysis. (1995)
SIAM, Philadelphia.

[28] Turek, S. Efficient solvers for incompressible flow problems: an algorithmic ap-
proach. (1999) Springer-Verlag, Berlin.

Appendix A
MATLAB CODE

The following code is in part adapted from John Burkardt [3] of Florida State Uni-
versity under the GNU license. In particular, full use is made of his basis functions,

quadrature, and mapping functions.

function [u,v,p] = boxflow(total_time ,nu,Lambda,...

solver_type ,save_option)

Poxxkxxskxsokkx START MAIN FUNCTION sk sk ok s sk s sk ok ok ok ook ok ok ok %ok

% INPUT total_time: amount of time to be evaluated

% nu: viscosity

% Lambda: stability parameter (0—100)

% Solver_type: 1—Backward Euler, 2—Crank—Nicolson
% save_option: optional; name to save workspace

% OUTPUT u, v: horizontal and vertical velocity

% p: pressure

quad_num = 7;% gauss quadrature rule; only 7 is allowed
Re = 1/nu; %Reynolds number
element_node = dlmread (’cavity_elements_72.txt’) ’;

node_xy = dlmread(’cavity_coords_72.txt ") ’;

% determines normal vectors, node numbering, boundaries,
% various element info
[pres ,pres_num ,node_num , element_num ,node_boundary ,dt , ...

steps ,normal_node ,variable_num , node_u_variable ,...

node_v_variable ,node_p_variable]. ..

= Set_Elements(total_time ,element_node ,node_xy);

% Compute mass, stiffness , and gradient matrices
[M,D,GP| = Set_Matrix (quad_num, element_node ,node_xy , ...
node_num ,node_u_variable , node_v_variable ,...

node_p_variable ,element_num ,pres_num);

im = M\speye (2*xnode_num ,2«node_num); %inverse M

Mp = GP’xim*GP; % laplace operator for pressure

pbound = logical (node_boundary (pres));

removebnd = Mp(: ,pbound);

Mp(pbound ,:) = 0;

Mp(:,pbound) = 0;

Mp(pbound , pbound) = diag(ones(nnz(node_boundary(pres)),1));

%

Yo sxxxskkxskkrnskk Initial Conditions sk skkskoxkkx
%

% initial velocity. initial pressure is solved for
[u v 7] = external_force(node_xy,0,1,Re);

node_.c = [u’; v’; zeros(pres.num,1)];

% solve for initial pressure
[Ku Kv] = Set_ PPE_RHS(Re,quad num, element_node ,...
node_xy ,node_num, node_p_variable ,node_u_variable ,...

element_num , pres.num, normal node,Lambda); %RHS PPE

41

% compute external force funtion for RHS of momentum

[7,7,F3] = rhs(0,dt,node num,node_u_variable ,...

node_v_variable ,node_p_variable, pres_.num ,element_num ,...

element_node ,quad_num ,node_xy ,Re);

K1 = Kusnode_c (1:node.num) + Kvxnode_c(node.num+1:2x...
node_num); %PPE RHS

K2 = removebnd % Kl(pbound); %adjust boundary

K = F3-K2;%adjust boundary

K(pbound) = Kl(pbound);%adjust boundary

K(1) = 0; % set first pressure node to zero
PMp\K:

node_c (2+*node_ num+1:variable num ,1) = P;

%

T sxkrnkskkskkknkk END Initial Conditions sk sk sk *

%

%o sk Solve System sorsokoksosokok ko k %

if (solver_type = 1)
node_c = Backward_Euler (Re,M,D,GP,Mp,Ku,Kv,node_c , ...
removebnd , pbound , node_boundary , steps ,dt, variable_num , ...
element_node ,node_xy ,quad_num ,node_num , element_num , . ..
pres_.num , node_p_variable ,node_u_variable ,...
node_v_variable);

else

[node_c] = Crank_Nick (Re,M,D,GP,Mp,Ku,Kv,node_c , ...

removebnd , pbound , node_boundary , steps ,dt,variable_num , ...

43

element_node ,node_xy ,quad_num ,node_num ,element_num , . ..
pres_.num , node_p_variable ,node_u_variable ,...

node_v_variable);

end
u = node_c (1l:node_num);
v = node_c(l4+node_num:2*node_num);

p = node_c(1+2+node num:end);

%post—processing

plotdata (u,v,p,node_xy ,node num, pres ,steps ,dt,Re)

% Save data if argument exists
if (nargin = 5)
if (ischar (save_option))
save(save_option)
end
end
00 skkskkkkkxkkkkkkkxxx END Main Program sk sokok s skok s sk ok ok ok ok

end

function [pres,pres_.num ,node num ,element_num ,...
node_boundary ,dt, steps ,normal_node , variable_num , ...
node_u_variable ,node_v_variable ,node_p_variable]...

= Set_Elements(total_time ,element_node ,node_xy)

pres = unique (element_node (1:3 ,:)); %pressure nodes
pres_.num = length (pres); % number of pressure nodes
node_num = max(max(element_node)); %total number of nodes

element_num = size (element_node ,2); %number of elements

node_boundary=triangulation_order6_boundary_node (node_num ,

node_xy ’, element_node);

% % *xx Determine Time Step s#x*x*

del_x = min_dist (node_xy ,element_node);
dt = .95xdel_x"2;

steps = ceil(total_time/dt)—1;

% % xxxx END TIME STEP sk

max_x = max(node _xy (1,:));
min_x = min(node_xy (1,:));
max_y = max(node_xy (2 ,:));
min_y = min(node_xy (2 ,:));

Poxksxxxkx NORMAL VECTORS s s s o sk s % 5k

normal_node = zeros(2,node_num);

normvec = (node_xy (1,:) = max_x);
normal_node (1,:) = normvec;

normvec = (node_xy (1,:) = min_x);

normal node (1,:) = normal node(1,:) — normvec;
normvec = (node_xy (2,:) = max.y);

normal_node (2 ,:) = normvec;

44

45

normvec = (node_xy (2,:) = min_y);

normal_node (2,:) = normal_node(2,:) — normvec;

normvec = abs(normal node(1,:)) + abs(normal_node (2,:));

normal_node (: ,normvec==2) = 0;

normvec = find (node_xy (1,:) = max.x & node_xy (2,:)...
= max.y);

normal_node (: ,normvec) = [1 1]7;

normvec = find (node_xy(1,:) = min_x & node_xy (2 ,:)...
— max.y);

normal_node (: ,normvec) = [—-1 1]7;

normvec = find (node_xy(1,:) = min_x & node_xy (2,:)...
= min_y);

normal_node (: ,normvec) = [-1 —1]7;

normvec = find (node_xy (1,:) = max.x & node_xy (2,:)...
— min.y);

normal_node (: ,normvec) = [1 —1]7;

Yoxxxxxxx END NORMAL VECTORS sk % # o % %

Toxxsxxxx number variables ssksskskskkkx

variable_num = 2xnode_num-+pres_num ;
node_u_variable = 1:1:node_num;
node_v_variable = node.num+41:1:2%xnode_.num;

node_p_variable =zeros(1,node_num);
node_p_variable(pres) = 142%node num:1:variable num ;
return

end

% the external force F

function [u v p] = external_force(xy,t,type,Re)
x = xy(1,:);
y = XY(27:);

ct = cos(t); st=sin(t);

s2py = sin (2% pixy); spx = sin(pi*x);

s2px = sin (2% pi*x);spiy = sin (pixy

’

)

)
cpx = cos(pi*x); c2px = cos (2% pi*x);

)

cpy = cos(pixy); c2py = cos(2kxpixy

I

u = pixctxs2py.*xspx.” 2;
V = —pixct*xs2px.*xspiy .~ 2;

P = —ctxcpx.*xspiy;

dudx = 2xpikct.*xs2py.*SpX.*CpX;
dvdy = —2«pi*ct.*s2px.*spiy.*cpy;
divu = norm(dudx +dvdy,inf);

else

ut = —pixst*xs2py.*xspx.” 2;
vt = pi*stx*xs2px.xspiy. 2;
lapu = 2xpi “3xct*s2py.x(cpx."2—spx." 2)...

—4xpi " 3kct.xs2py.*xspx. 2;

lapv = 4xpi 3*xct*xs2px.*xspiy. 2
— 2%pi " 3*ct*s2px.*x(cpy. 2—spiy. 2);
pX = pixct*spx.*spiy;

py = —pi*xctxcpx.*xcpy;

u = ut + px — (1/Re)*lapu;
v = vt + py — (1/Re)xlapv;
p = 0;
end
return
end
% compute mass, diffusion, and gradient matrices
function [M,D,GP] = Set_Matrix (quad_num,element_node ,...
node_xy, nodenum,node_u_variable ,...

node_v_variable ;node_p_variable ,element_num , pres_num)

vec_len = element_num*36;
mu = zeros(vec_len ,3);

mv = mu;

uu = mu;

VvV = mu;

row_cnt = 1;

vec_len = element_num=x18;
pu = zeros(vec_len ,3);

bv = bu;

47

row_cnt2 = 1;

velocity_dof = 2xnode_num;

| quad_w, quad_xy | = quad_rule (quad.num);

for element = 1 : element_num

%

% Make a copy of the triangle.

%
t3(1:2,1:3) = node_xy (1:2,element_node (1:3,element));
t6(1:2,1:6) = node_xy (1:2,element_node (1:6,element));

%

% Map the quadrature points QUADXY to points XY in
% the physical triangle.
xy(1:2,1:quad num) = reference_to_physical _t6(t6 ,...
quad_num, quad_xy);
area = abs (triangle_area_2d (t3));
w(l:quad num) = area * quad_w(1:quad_num);
%
% Evaluate the basis functions at the quadrature points.
%
[Psi, dPsidx, dPsidy | = basis_mn_t6(t6, quad num, ...
Xy);
[7, dPhidx, dPhidy]| = basis_.mn_t3(t3,quad num,xy);

49

iu(1:6) = node_u_variable(element_node (1:6,element));
iv(1:6) = node_v_variable(element_node (1:6,element));
ip(1:3) = node_p_variable(element_node(1:3,element))...

—velocity_dof;

for i = 1:6
for j = 1:6
% mass matrix
mu(row_cnt ,1:2) = [iu(i),iu(j)];
mu(row_cnt ,3) = sum(w(1l:quad_num) .x
Psi(i,l:quad num) .x Psi(j,1:quad num));
mv(row_cnt ,1:2) = [iv(i),iv(j)];

mv(row_cnt ,3) = mu(row._cnt ,3);

% stiff matrix

uu(row_cnt ,1:2) = [iu(i),iu(j)];

uu(row_cnt ,3) = sum(w(1l:quadnum) .x*...
(dPsidx (i,1:quad_num) .x
dPsidx (j,1:quad-num)+dPsidy (i,1:quad_num)...
% dPsidy(j,1l:quad.num)));

vv(row_cnt ,1:2) = [iv(i),iv(]j)];
vv(row_cnt ,3) = uu(row_cnt ,3);
if i <4

% gradient of P

pu(row_cnt2,1:2) = [iu(j),ip(i)];

end

end

end

mu = mu(any (mu

mv = mv(any (mv

pu(row_cnt2,3) = sum(w(1l:quad_num)...
% dPhidx (i,1:quad_num) .x...
Psi(j,1:quad.num));

pv(row_cnt2 ,1:2) = [iv(]),ip(i)];

pv(row_cnt2 ,3) = sum(w(1l:quad_num)..
. dPhidy (i,1:quad-num) .x*...
Psi(j,1:quad.num));

row_cnt2 = row_cnt2 + 1;

end

row_cnt = row_cnt + 1;

(:,3),2),:);
(: 73) 72> 7:);

mu = [mu;mv];

M = sparse(mu(:,1) ,mu(:,2) mu(:,3),2«node_num,2xnode_num);

uu = uu(any (uu

vv = vv(any(vv

uu = [uu;vv|;

D = sparse(uu(:,1),uu(:,2),uu(:,3),2+«node_num,2*node_num);

50

pu = pu(any(pu(:,3),2),:);

pv = pv(any(pv(:,3),2),:);

pu = [pu;pv];

GP = sparse(pu(:,1),pu(:,2),pu(:,3),2«node_num,pres_num);

return ;
end
% Backward Euler method
function [node_c| = Backward_Euler (Re,M,D,GP,Mp,Ku,Kv, ...
node_c ,removebnd ,pbound ,node_boundary ,steps ,dt ,...
variable_num , element_node ,node_xy ,quad_num , node_num , ...
element_num , pres_.num , node_p_variable ,...

node_u_variable ,node_v_variable)

boundary_size = nnz([node_boundary ,node_boundary |);

Ibound = logical ([node_boundary ,node_boundary]|’);

Lhs = (M+(dt/Re)*D); % pre—solve LHS momentum eq.
Lhs(lbound ,:) = 0; %adjust boundary

Lhs(:,lbound) = 0; %adjust boundary

Lhs(lbound ,lbound) = diag(ones(boundary_size ,1));%adj b.c.

for time = 1:steps

tic
%compute external force funtion for RHS of momentum
[F,”,F3] = rhs(timexdt,dt,node num,node_u_variable ,...

node_v_variable ,node_p_variable ,pres_num , ...

o1

element_num , element_node ,quad_num ,node_xy ,Re);

Rhs = Msnode_c (1:2%xnode_num) —dt+GP. ..
xnode_c(1+2«node_num:end) + dt«F;
Rhs(lbound) = 0; %adjust boundary

node_c (1:2xnode.num) = Lhs\Rhs;

% Solve PPE

K1 =Kusnode_c (1:node_num)+Kvs«node_c (node_ num+1:2«node_num);
K2 = removebnd * KI(pbound);

K = F3-K2;

K(pbound) = Kl1(pbound);

K(1) = 0;

P=Mp\K;

node_c(2+*node_num+1:variable num ,1) = P;

tm = toc;
fprintf ('step %i of %i completed in %3.4f s \n’, time,...
steps , toc)
end
return
end
% Crank—Nickolson /Adams—Bashforth method
function [node_c| = Crank_Nick(Re,M,D,GP,Mp,Ku,Kv,node_c ,...

removebnd , pbound , node_boundary , steps ,dt,variable_num , ...

52

93

element_node ,node_xy ,quad_num ,node_num ,element_num , . ..

pres_.num ,node_p_variable ,node_u_variable ,node_v_variable)

solution = zeros(variable_num ,2); %current and previous

boundary_size = nnz ([node_boundary ,node_boundary]);

lbound = logical ([node_boundary ,node_boundary]’);

solution (:,2) = node_c;
Lhs2 = (M+.5%xdt/RexD);% pre—solve LHS momentum eq.
Lhs2(lbound ,:) = 0;%adjust boundary
Lhs2(:,lbound) = 0;%adjust boundary
Lhs2 (lbound ,lbound) = diag(ones(boundary_size ,1));
Lhs2 = Lhs2\speye(2+«node_num ,2*node_num);

for time = 1:steps

tic

if (time = 1)
[F,”,F3] = rhs(timexdt,dt,nodenum,node_u_variable ,...
node_v_variable ,node_p_variable ,pres_.num ,...

element_num , element_node ,quad num,node_xy ,Re);

Rhs = Mxnode_c (1:2«node_num) —dt*GP. ..
xnode_c(14+2«nodenum:end) + dtxF;

Rhs(lbound) = 0;%adjust boundary

Lhs = (M+(dt/Re)*D);% pre—solve LHS momentum eq.

Lhs(lbound ,:) = 0;%adjust boundary

54

Lhs(:,lbound) = 0;%adjust boundary
Lhs(lbound ,lbound) = diag(ones(boundary_size ,1));
node_c (1:2«node num) = Lhs\Rhs;
else
[F,F2,F3] = rhs(timexdt,dt,node.num, ...
node_u_variable ,node_v_variable ,node_p_variable ,...
pres_num , element_num , element_node ,quad_num ,node_xy ,Re);
F = 5% (F+F2);
Rhs = (M—.5xdt/ResD)*node_c (1:2xnode_num ,1)... %u_n
+dt*GP*(—1.5«node_c(1+2*node_num:end) ...
+.5%xsolution (1+2«node num:end,1))+dt=*F;
Rhs(lbound) = 0;
node_c(1:2xnode_num,1) = Lhs2xRhs;

end

% Solve PPE
K1 = Kuxnode_c (1:node_num)
+ Kv#node_c(node_num+1:2+¥node_num);
K2 = removebnd x KIl(pbound);
K = F3-K2:
K(pbound) = Kl (pbound);

K(1) = 0;
P=Mp\K;
node_c (2+*node_ num+1:variable num ,1) = P;

solution = [solution (:,2),node_c|;

tm = toc;
fprintf (’step %i of %i completed in %3.4f s \n’ ,...

time , steps , toc)

end
return

end

function [Ku Kv] = Set_ PPE_RHS(Re,quad_num,element_node , ...
node_xy ,node_num, node_p_variable ,node_u_variable ,...

element_num , pres.num, normal node,Lambda)

vec_len = element_ num*18;
uu = zeros(vec_len ,3);
VvV = uu;
row_cnt = 1;
velocity_dof = 2xnode_num;
%
% Get the quadrature weights and nodes.
%
[quad_w, quad_xy | = quad_rule (quadnum);
%

% Consider all quantities associated with a given ELEMENT.

%

for element = 1 : element_num

95

o6

%
% Make a copy of the triangle.
%0
t3(1:2,1:3) = node_xy (1:2,element_node (1:3,element));
t6(1:2,1:6) = node_xy (1:2,element_node (1:6,element));
%

% Map the quad points QUADXY to
% points XY in the physical triangle.
xy(1:2,1:quad num) = reference_to_physical _t6(t6 ,...
quad_num, quad_xy);
area = abs (triangle_area_2d (t3));
w(l:quad_num) = area * quad_w(1:quad_num);
%
% Evaluate the basis functions at the quadrature points.
[Psi, dpsidx, dpsidy | = basis.mn_t6 (t6,
quad num, xy);
[Phi, dphidx, dphidy | = basis.mn_t3 (t3,

quad_num, xy);

% Extract the node indices for this element.
iu(1:6) = node_u_variable(element_node (1:6,element));
ip(1:3) = node_p_variable(element_node(1:3,element))...
—velocity_dof;
% mnormal vector for each node in the element

normal_vec = normal_node (:,element_node (1:6,element));

% compute <curl(u), n % grad(Phi)> + lambda<n * u,Phi>
for i = 1:3
for j = 1:6

uu(row_cnt ,1:2) = [ip(i),iu(j)];

dphidtau = normal_vec(1,i)*dphidy(i,1:quad_num).

—normal_vec(2,i)*dphidx(i,1:quad_num);

uu(row_cnt ,3) = sum(w(1l:quad_num).* (—dphidtau)..

% dpsidy (j,1l:quad.num) + Lambda. ..
snormal _vec(1,j)*xPsi(j,1:quad.num)...
«Phi(i,1:quad.num));

vv(row_cnt ,1:2) = [ip(i),iu(j)];

vv(row_cnt ,3) = sum(w(1l:quad_num).* dphidtau
% dpsidx(j,1:quad_-num)+ Lambda. ..
snormal_vec(2,j)*xPsi(j,1l:quad.num)...
.« Phi(i,1:quad.num));

row_cnt = row_cnt + 1;

end
end

end

uu = uu(any(uu(:,3

Ku = (1/Re)*xsparse

=

)
vv = vv(any(vv(:,3),2

(

(

Kv = (1/Re)*sparse

57

u(:,2),uu(:,3),pres.num ,node_num);

,vv (:,2),vv(:,3),pres.num ,node_num);

o8

return

end

function [F1,F2,F3] = rhs (t,dt,node.num,node_u_variable ...
node_v_variable ;node_p_variable ,pres_.num ,element num , ...

element_node ,quad_num ,node_xy ,Re)

F1 = zeros(2+«node.num,1); % F at time = t
F2 = F1;% F at time = t + .5dt
F3 = zeros(pres.num,1);% F at time = t + dt

[quad_w, quad_xy | = quad_rule (quad num);

%
% Consider all quantities associated with a given ELEMENT.

%

for element = 1 : element_num
%
% Make a copy of the triangle.
%
t3(1:2,1:3) = node_xy (1:2,element_node (1:3,element));
t6(1:2,1:6) = node_xy (1:2,element_node (1:6,element));
%

% Map the quadrature points QUADXY to
% points XY in the physical triangle.
%

xy(1:2,1:quad num) = reference_to_physical t6(t6 ,...

99

quad_num, quad_xy);

area = abs (triangle_area_2d (t3));

w(l:quad num) = area * quad_w(1:quad_num);
iu(1:6) = node_u_variable(element_node (1:6,element));
iv(1:6) = node_v_variable(element_node(1:6,element));

ip (1:3) = node_p_variable(element_node(1:3,element))...
—2%node_num ;
%
% Evaluate the basis functions at the quadrature points.
%
[Psi, 7, 7] = basis.mn_t6 (t6, quadnum, xy);

| 7, dphidx, dphidy | = basis.mn_t3 (t3, quad_num, xy);

%evaluate forcing function
[u_rhs ,v_rhs ,”] = external _force(xy,t,2,Re);
[u_rhs2 ,v_rhs2 7] = external_force(xy,t+.5xdt,2 ,Re);

[u_rhs3, v_rhs3 7| = external_force(xy,t+dt,2,Re);

% weak form
for i = 1:6
Fl(iu(i)) = F1(iu(i)) + sum(w.xu_rhs (1:quad-num)...
% Psi(i,1:quad.num));
Fl(iv(i)) = F1(iv(i)) + sum(w.xv_rhs(1l:quad num)...
% Psi(i,l:quad_num));

F2(iu(i)) = F2(iu(i)) + sum(w.xu_rhs2 (1l:quad-num)...

% Psi(i,l:quad_num));
F2(iv(i)) = F2(iv(i)) + sum(w.xv_rhs2 (1:quad num)...
% Psi(i,l:quad num));

if i<4

F3(ip(i)) = F3(ip(i))+sum(w.*(u_-rhs3 (1l:quad-num)...

% dphidx(i,1l:quad.-num) + v_rhs3 (1l:quad_num)...

% dphidy (i,1:quad_num)));
end
end

end

return

end

function [quad_-w, quad_xy | = quad_rule (quad_num)

D0 5 % 3k sk ok 3k sk ok 3 ok ok K ok ok K ok ok ok R oKk KKK KKK K oK K R oKk K KK R KK K K K K K oK K K oKk K koK Kk
%% QUADRULE sets the quadrature rule for assembly.
% The quadrature rule is given for a reference element,

% points (X,Y) such that

% 0 <= X,

% 0 <=Y, and
% X+Y<=1.
%

% .

% J R

60

%
%
%
%
%0
%
%
%0
%
%0
%
%
%
%
%
%0
%
%0
%
%
%
%
%0
%

61

Licensing :

This code is distributed under the GNU LGPL license.

Modified:
17 July 2005

Author:
John Burkardt

Parameters:

Input, integer QUADNUM, the number of quadrature nodes.

Legal values are 7

Output, real QUADW(QUADNUM), the quadrature weights.

Output, real QUADXY(2,QUADNUM), the quadrature nodes.

if (quadnum = 7)

a= 1.0/ 3.0;

b=(90+4+ 2.0 % sqrt (15.0)) / 21.0;
c=(6.0 — sqrt (15.0)) / 21.0;
d=(9.0 2.0 % sqrt (15.0)) / 21.0;
e =(6.0 + sqrt (15.0)) / 21.0;
u= 0.225;

v =(155.0 — sqrt (15.0)) / 1200.0;
w=(155.0 + sqrt (15.0)) / 1200.0;

quad_w (l:quad.num) = [u, v, v, v, w, w, w |;
else
fprintf (1, \n’);
fprintf (1,’QUADRULE — Fatal error!\n’);
fprintf (1,...

'No rule is available of order QUADNUM = %d\n’ ,...

quad_num);

error ('QUADRULE — Fatal error!\n’);

end

return

end

function phy = reference_to_physical_t6 (t, n, ref)

T 3 3k sk s 3 ok sk sk ok ok ok ok ok K ok oK oK KK R KKK K KKK KK KKK KK Sk K KK KKK KK Sk oK oK KOk
%

%% REFERENCE_TO PHYSICAL.T6 maps T6 reference points
% to physical points.

% Discussion :

%

% Given the vertices of an order 6 physical triangle
% and a point (XSI,ETA) in the reference triangle ,
% the routine computes the value of the corresponding

% image point (X,Y) in physical space.

% The mapping from (XSI,ETA) to (X,Y) has the form:

%

% X(ETA,XSI) = Al % XSI*x2 + Bl % XSI+ETA + Cl x ETAxx%2
% + D1 * XSI + El * ETA + F1

%

%o Y(ETA,XSI) = A2 % XSI*%2 + B2 % XSI«ETA + C2 % ETAxx2
% + D2 x XSI + E2 x ETA + F2

%

63

%
%
%
%
%0
%
%
%0
%
%0
%
%
%
%
%
%0
%
%0
%
%
%
%
%0
%
%
%0

64

Reference Element T6:

1 3

N
A

S 6 5
b\
| \
0 1-——4——2

Licensing:

This code is distributed under the GNU LGPL license.

Modified :
26 June 2005

Author:
John Burkardt

Parameters:
Input, real T(2,6), the coordinates of the vertices.
The vertices are assumed to be the images of (0,0), (1,0),

(0,1),(1/2,0), (1/2,1/2) and (0,1/2) respectively.

%

% Input, integer N, the number of objects to transform.
%

% Input, real REF(2,N), points in the reference triangle.
%

% Output, real PHY(2 ,N), corresponding points in the

% physical triangle.

%

a(i) = 2.0 % t(i,1) + 2.0 = t(i,2)
C 40 % t(i,4);
b(i) = 4.0 %« t(i,1)

c(i) = 2.0 % t(i,1) 4 2.0 % t(i,3)
— 4.0 % t(i,6);

end

for i =1 : 2

phy(i,1:n) = a(i) * ref(1,1:n) .x ref(1,1:n)
+ b(i) *x ref(1,1:n) .x ref(2,1:n)
+ c(i) % ref(2,1:n) .x ref(2,1:n)
+ d(i) % ref(1,1:n)
+ e(i) * ref(2,1:n)
+ f(i);
end
return
end
function area = triangle_area_2d (t)

T 5 ¢ 3k 3k ok 3k sk ok 3k ok ok ok ok K ok ok K R oKk KKK KK K K K K K oK K R KK KKK R KoK K K oK K R oK K R ok o K ok K
%% TRIANGLE_AREA 2D computes the area of a triangle in 2D.
%

% Licensing:

%

% This code is distributed under the GNU LGPL license.
%

% Modified:

% 28 January 2005

%

66

67

% Author:

% John Burkardt

%

% Parameters:

% Input, real T(2,3), the triangle vertices.

% Output, real AREA, the absolute area of the triangle.

%

return

end

function [phi, dphidx, dphidy,area]=basis_.mn_t6(t,n,p)
T 5 % 3 ok ok ok kK ok ok ok ok Ko ok ok oK K ok koK KR R koK K R R KK K KK KoK K KK KoK K K KoK K R ok ok K
%

%% BASIS.MN_T6: all bases for N points in a T6 element.
%

% Discussion :

%

% The routine is given the coordinates of the vertices
% and midside nodes of a triangle. It works directly
% with these coordinates, and does not refer to a

% reference element.

%
%
%
%
%0
%
%
%0
%
%
%
%
%0
%
%
%0
%
%
%
%
%
%
%0
%
%
%0

68

This routine requires that the midside nodes be

7in line” with the vertices, that is, that the sides
of the triangle be straight. However, the midside
nodes do not actually have to be halfway along the

side of the triangle.

Physical element T6:

This picture indicates the assumed ordering of the

six nodes of the triangle.

Licensing :

This code is distributed under the GNU LGPL license.

Modified:

17 February 2006

Author:

John Burkardt

69

% Parameters:

%Input , real T(2,6), the nodal oordinates of the element.
%It is common to list these points in counter clockwise order.
%

% Input, real P(2,N), the evaluation points.

%

% Output, real PHI(6,N), the basis functions at the

% evaluation points.

% Output, real DPHIDX(6,N), DPHIDY(6,N), the basis

% derivatives at the evaluation points.

%

% Local Parameters:

% Local, real AREA, is (twice) the area of the triangle.
%

%
% Basis funcl: PHI(X,Y) = G(3,2) % H(6,4) / normalization.
%

Xi =p(l,1:n);

Eta = p(2,1:n);

xI = t(1,1); x2 =1t(1,2); x3 =1t(1,3); x4 =t(1,4); x5...
=t(1,5); x6 = t(1,6);

yl = t(2,1); y2 =1t(2,2); y3 =1t(2,3); y4 =1t(2,4); y5...

=t(2,5); y6 = t(2,6);

area = t(1,1) = (t(2,2) — t(2,3)) ...

gx(l:n) = (Xi —x2) *x (y3 —y2) ...

gn(l:n) = (x1 — x2) %« (y3 —y2) ...
= (x3 =x2) x (yl = y2);

hx(l:n) = (Xi — x4) x ((y6 — y4) ...

|
"
D
|
»
IS
~—
*
—
&3
-+
o
|
~<
IS

hn(l:n) = (x1 — x4) % (y6 — y4d) ...

phi(1,1:n) = (gx(1l:n) .x hx(l:n)) ./ (gn(l:n)
2 hn(l:n))
dphidx(1,1:n) = ((y3 — y2) % hx(l:n) ...

+ gx(l:n) « (y6 —yd)) ...

./ (gn(l:n) .x hn(l:n));

%
%0
%

dphidy (1,1:n) = —((x3 — x2) % hx(l:n) ...
+ gx % ((x6 — x4)) ...

./ (gn(l:n) .x hn(l:n));

Basis func 2: PHI(X.,Y) = G(3,1)% H(4,5)/normalization.

gx(lim) = (Xi —x1) % (y3 —yl) ...
— (x3 —x1) % (Eta — yl);

gn(l:in) = (x2 —x1) % (y3 —yl) ...
- (x3—=x1) = (y2—-yl);

hx(l:n) = (Xi — x5) = ((y4 —y5) ...
— (x4 —x5) * (Eta— yb);

hn(l:in) = (x2 — x5) % ((y4 —yd>) ...
= (x4 = x5) x (y2 = y5);

ko
=
[\
=
B
Il
0=}
e
—
]
*

hx(1l:n)) ./ (gn(l:n) ...

dphidx(2,1:n) = ((y3 — yl) % hx(l:n) ...
+ gx(l:n) x ((y4 —y5)) ...
./ (gn(l:n) .x hn(l:n));

dphidy (2,1:n) = —((x3 — x1) % hx(l:n) ...

71

%0
%
%0

+ gx(l:n) * (x4 — x5)) ...

./ (gn(l:n) .x hn(l:n));

Basis func 3: PHI(X,Y) = G(1,2) * H(5,6)/normalization.

gx(l:n) = (Xi — x2)

*x
—~

yl —y2) ...

— (x1 —x2) % (Eta — y2);

gn(l:n) = (x3 — x2) % (yl —y2) ...
- (xl=x2) x (y3-y2);

hx(l:n) = (Xi = x6) «= (yb —y6) ...

|
"
ot
|
"
o
S~—
*

(Eta — y6);

hn(l:n) = (x3 — x6) = (yb — y6) ...
— (x> =x6) * (y3—y6);

phi(3,1:n) = (gx(1l:n) .x hx(l:n)) ./ (gn(l:n) ...

dphidx(3,1:n) = ((y1 — y2) % hx(l:n) ...

+ gx(l:n) « ((y5 —y6)) ...

./ (gn(l:n) .x hn(l:n));

dphidy (3.,1:n) = —((x1 — x2) % hx(l:n) ...

+ gx(l:n) « (x5 —x6)) ...

72

%
%0
%

./ (gn(l:n) .x hn(l:n));

Basis func4: PHI(X,Y) = G(1,3) % H(2,3) /normalization.

[
o
|

x3)« (yl —y3) ...
— (x1 —=x3) % (Eta — y3);

gx(1l:n)

gn(lin) = (x4 —x3) % (yl —y3) ...
- (xl=x3) « (y4—y3);

hx(lin) = (Xi —x3) % (y2 —y3) ...
— (x2 —x3) % (Eta— y3);

hn(l:n) = (x4 — x3) = (y2 —y3) ...
= (x2=x3) x (yd—y3);

phi(4,1:n) = (gx(1l:n) .* hx(l:n)) ./ (gn(l:n)...

dphidx(4,1:n) = ((yl — y3) % hx(l:n) ...
+ gx(l:n) * (y2 —y3)) ...
./ (gn(l:n) .x hn(l:n));

dphidy (4,1:n) = —((x1 — x3) % hx(l:n) ...
+ gx(l:n) * (x2 — x3)) ...

./ (gn(l:n) .x hn(l:n));

73

%
% Basis func 5: PHI(X,Y) = G(2,1) % H(3,1)/normalization.
%

gx(lm) = ((Xi —x1) % (y2 —yl) ...

- (x2 —x1) % (Eta— yl);

gn(l:n) = (x5 —x1) % (y2 —yl) ...

- (x2=x1)« (y5 =yl);
hx(l:n) = (Xi — x1) % ((y3 —yl) ...
— (x3 —x1) % (Eta — yl);

hn(l:in) = (xb — x1) % (y3 —yl) ...
—(x3=x1) x (yd—yl);

phi(5,1:n) = (gx(1:n) .*x hx(l:n)) ./ (gn(l:n) ...
& hn(l:n))
dphidx(5,1:n) = ((y2 — yl) % hx(l:n) ...

+ gx(l:n) « ((y3 —yl)) ...
./ (gn(l:n) .x hn(l:n));

dphidy (5,1:n) = —((x2 — x1) * hx(1l:n) ...
+ ogx(1ln) * (x3 —x1)) ...
./ (gn(l:n) . hn(l:n));
%

%
%

Basis func6: PHI(X,Y) = G(1,2) % H(3,2)/normalization.

gx(l:n) = (Xi —x2) *« (yl —y2) ...
— ((x1 = x2) x (Eta — y2);

gn(l:n) = (x6 — x2) %« (yl —y2) ...

= (xl = x2) % (y6 —y2);

hx(l:n) = (Xi — x2) % ((y3 —y2) ...

|
—~

x3 —x2) x (Eta — y2);

hn(l:n) = (x6 — x2) % (y3 —y2) ...
- (x3-=x2) « (y6 —y2);

phi(6,1:n) = (gx(1l:n) .x hx(l:n)) ./ (gn(l:n)...

dphidx (6,1:n) = ((yl — y2) % hx(l:n) ...
+ gx(l:in) x ((y3 —y2)) ...
./ (gn(l:n) .x hn(l:n));

dphidy (6 ,1:n) = —((x1 — x2) % hx(l:n) ...
+ gx(l:n) * (x3 — x2)) ...

./ (gn(l:n) .x hn(l:n));

75

76

return

end

function [phi,dphidx,dphidy,area | = basis.mn_t3(t,n,p)

%*>|<>|<***********>|<>|<>|<***********>|<****************************
% BASIS.MN_T3: all bases funcs at N points for a T3 element.
%

% Discussion :

% The routine is given the coordinates of the vertices

% of a triangle. It works directly with these coordinates,
% and does not refer to a reference element.

%

% The sides of the triangle DO NOT have to lie along

% a coordinate axis.

%

% The routine evaluates the basis functions associated

% with each vertex, and their derivatives with respect

% to X and Y.

% Physical Element T3:
% 3

7 /A
% /o
7 / \

% / \
% — 2

%
%
%
%
%0
%
%
%0
%
%
%
%
%0
%
%
%0
%
%0
%
%
%0
%
%0
%
%
%0

7

Licensing:

This code is distributed under the GNU LGPL license.

Modified:
14 February 2006

Author:
John Burkardt

Parameters:

Input, real T(2,3), the vertices of the triangle. It
is common to list these points in counter clockwise
order .

Input, integer N, the number of evaluation points.

Input, real P(2,N), the coordinates of the evaluation
points .

Output, real PHI(3,N), the basis functions at the
evaluation points.

Output, real DPHIDX(3,N), DPHIDY(3,N), the basis

derivatives at the evaluation points.

Local parameters:

Local, real AREA, is (twice) the area of the triangle.

%

%

area = t(1,1) x

dphidx (1,1:n) =
dphidy (1,1:n) =

phi(2,1:n) =

- t(2,3))

dphidx (2,1:n) =

dphidy (2,1:n) =

phi(3,1:n) =

- t(2,1))

dphidx (3,1:n) =
dphidy (3,1:n) =

78

% Normalize.

%
phi(1:3,1:n) = phi(1:3,1:n) / area;
dphidx (1:3,1:n) = dphidx(1:3,1:n) / area;
dphidy (1:3,1:n) = dphidy(1:3,1:n) / area;

return

end

function plotdata(u,v,p,node_xy ,node_num, pres ,steps ,dt,Re)

% plot velocity magnitude

figure (1);

xlin = linspace (min(node_xy (1,:)) ,max(node_xy (1,:)),...
min (500, ceil (.5*xnode_num)));

ylin = linspace (min(node_xy (2,:)) ,max(node_xy (2 ,:)),...
min (500, ceil (.5*xnode_num)));

[xx,yy]| = meshgrid(xlin ,ylin);

vel = sqrt(u.”2 + v."2);

F = TriScatteredInterp (node_xy(1,:)’ ,node_xy(2,:)’,vel);

z = F(xx,yy);

colormap (jet)

imagesc (xlin ,ylin ,z)

hold on

% plot streamlines

U = TriScatteredInterp (node_xy (1,:)’,node_xy(2,:) ,u);

V = TriScatteredInterp (node_xy (1,:)’ ,node_xy (2,:)’,v);
uu = U(xx,yy);

vv = V(xx,yy);

U = streamslice (xx,yy,uu,vv); axis(’tight ’);

set (U, ”Color ", " white 7)

xlabel ('x’,’ fontsize ’,10, fontweight >, ’b")

Y

ylabel (’y’,’fontsize * 10, fontweight ’,’b")
set (gca, XTick’,[0 0.2 0.4 0.6 0.8 1],’YTick’,[0 0.2 0.4...
0.6 0.8 1], fontsize ’,10, fontweight ’,’b’, " ydir ', ’normal ")

hold off

%plot Pressure

figure (2)

F = TriScatteredInterp (node_xy (1,pres)’,node_xy(2,pres)’,p);
pp = F(xx,yy);

surf(xx,yy,pp, FaceColor’, “interp ', FaceLighting ', ’phong’)
xlabel (’x’, fontsize * 10, fontweight ’,’b")

ylabel (’y’, fontsize 10, fontweight ’,’b")

zlabel ("pressure ', fontsize *,10, fontweight >, ’b")

set (gea, XTick’,[0 0.2 0.4 0.6 0.8 1],’YTick’,[0 0.2 0.4...

0.6 0.8 1], fontsize *,10, fontweight’,’b")

[ua va pa] = external_force(node_xy,(steps)xdt,1 ,Re);
norm(ua’—u, inf)
norm (ua’—u,2)

xlin = linspace (min(node_xy (1,:)) ,max(node_xy (1,:)),...

80

min (50, ceil (.5%xnode_num)));

ylin = linspace (min(node_xy (2,:)) ,max(node_xy (2 ,:)) ,...
min (50, ceil (.5*node num)));

[xx,yy] = meshgrid(xlin ,ylin);

%plot velocity error

figure (3);

true_v = sqrt(ua.”24+va. 2)7;

F = TriScatteredInterp (node xy (1,:)’ ,nodexy (2,:)7,...
(vel—true_v));

z = F(xx,yy);

colormap (jet)

surf(xx,yy,z, FaceColor’, interp ', EdgeColor’, 'none’ ...
"FaceLighting ', "phong ") ;

title ("Flow Velocity error’)

colorbar ;

%plot Pressure error

figure (4)

F = TriScatteredInterp (node_xy(1,pres)’,node_xy(2,pres)’
p—pa(pres)’);

pp = F(xx,yy);

colormap (jet)

surf (xx,yy,pp, FaceColor’, interp ', EdgeColor’, 'none’ ...
"FaceLighting ’, phong ")

title (’Pressure field error’)

colorbar

PRI

82

return
end

function bnd=triangulation_order6_boundary_node (num_node,xy,t)

T 4 s o o ok ok sk sk ok ok ok Kk ok ok ok ok sk ok ok ok KKk ok ok ok ok ok ok kK KR ok ok sk ok ok kK K KOk o ok ok ok ok ok ok KK ok ok o
%

%% TRIANGULATION_ ORDER6 BOUNDARY NODE indicates which nodes
% are on the boundary.

% p contains coordinates

% t contains elements

t =17,

62 = [t(:,4)56(:,5) 5t (:,6)];

to= [t(:,1:2);6(:,2:3)5[t(:,3),t(:,1)]];

t = sort(t,2);

t = [t,t2];

edges = unique (t, 'rows’);

t] = length (edges);

% identify boundary nodes
bnd = zeros (1,num_node);
for 1 = 1:tl
indx2 = find(t(:,1) = edges(i,l) &
0(:,2) = edges(i,2));
if (length (indx2) = 1)

bnd(1,edges(i, 1)) = 1;

bnd(1,edges(i,2)) = 1;
bnd (1,edges(i,3)) =1
end

end

% interior boundaries on rectangle domain

max_x = max(xy(:,1)) —eps;
min_x = min(xy(:,1))+eps;
max_.y = max(xy(:,2))—eps;
min_.y = min(xy(:,2))+eps;
for i = 1l:num-_node

if (bnd(i) = 1)

if (xy(i,1) < maxx && xy(i,1) > min.x & ...

xy(i,2) < max.y && xy(i,2) > min_y)

bnd (i) = 2;
end
end

end

return
end
function del_x = min_dist (coords ,nodes)
[rows cols] = size(nodes);

del_x = 9999;

83

for element = 1:1:cols

sidel = norm(coords (:,nodes(1,element))
coords (:,nodes (4,element)));

side3 = norm(coords (:,nodes(1,element))
coords (:,nodes (6,element)));

side2 = norm(coords (:,nodes(2,element))
coords (:,nodes(5,element)));

del_x = min([del_x ,sidel ,side2 ,side3]);

end

return

end

84

Appendix B
SURVEY ON ANALYTIC SOLUTIONS

The following are excerpts from various authors on research, both past and present,
on the existence and uniqueness of analytic solutions to the Navier-Stokes equations.
The papers cited span from 1934 to present. They demonstrate significant progress
towards understanding deeply the Navier-Stokes equations, but the also expose how

much work is still to be done in this area.

B.1 Excerpts on Existence and Uniqueness

For the NS on (0,7) x R3, V- u = 0, u is called a weak solution if it is a Leray-Hopf

solution, namely

we L((0,7), L*(R%) N L*((0,T), H'(R?))
V-u=0 forxz € (0,T) x R?

T
/ (—u- ¢+ Vu-Vo+ (u-Vu) - ¢)dxdt =0
0

for all test functions ¢ in C§° ((0,T) x R?) with V- ¢ =0 in (0,T) x R3,

Concerning the uniqueness for the Leray-Hopf solutions, since Leray and Hopf
proved the global existence of weak solutions [20, 13], it has been an open problem
to prove or disprove the uniqueness and regularity (smoothness) of weak solutions to
the Navier-Stokes equations. The question of if the solution has continuity or sta-

bility that can be reproduced is also a big question in the study of numerical methods.

E. Hopf commented [13], “It is hard to believe that the initial value problem for
the viscous fluid in dimension n = 3 could have more than one solution, and more

work should be devoted to the study of the uniqueness question.”

86

From O. A. Ladyzhenskaya [19]: “As regards the class of weak Hopf solutions for
the general three-dimensional case, it has always seemed to me that it is too broad, i.
e. , that there is missing in it a basic property of of the initial-value problem, viz. its
determinacy (a uniqueness theorem)... But I had available only indirect reasons in
support of this assertion... which had no formal demonstrative power. At this time I
am able to rigorously prove the validity of my opinions.”

In [19] she constructed an example of non-uniqueness in a non-standard time-
dependent domain which degenerates to one point at time ¢ = 0. The boundary
conditions are also non-standard and based on the study of certain scale-invariant
solutions. The solutions are considered in the class of axi-symmetric velocity fields
with no swirl. The time-dependent domain corresponds to the image of a fixed space-
time domain in the self-similarity variables. She commented, “We note that a certain
exoticness of the domain QT in which our example has been constructed does not
imply the loss of the uniqueness theorems just mentioned (they are usually proved

for the case of a domain which does not alter with time...”

Jia and Sverdk conjectured [15, 14] that for many large scale-invariant initial
data the scale invariant solutions are not unique, and suggested possible implications

for the non-uniqueness of the Leray-Hopf weak solutions.

The 2D problem in NS is known and settled. In three dimensions, the question
of existence in L? was proved by Leray. However it is unsettled if the solution is
unique or if they contain any singularity (smoothness). The Clay Mathematics In-
stitute has called this one of the seven most important open problems in math and

offer US$1,000,000 prize for a solution or a counterexample.

87

[1]: Kato initiated the study of the Navier-Stokes equations in critical spaces by
proving that the problem is locally well-posed in L3 and globally well-posed if the
initial data are small in L3(R3). The study of the Navier-Stokes in critical spaces

continues to be studied by many authors.

Koch and Tataru [18] proved the global well-posedness of the Navier-Stokes equa-
tions evolving from small initial data. The space has a special role since it is the largest

critical space among the spaces listed where such existence results are available.

	Georgia Southern University
	Digital Commons@Georgia Southern
	Summer 2013

	Pressure Poisson Method for the Incompressible Navier-Stokes Equations Using Galerkin Finite Elements
	John Cornthwaite
	Recommended Citation

	Acknowledgments
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	The Navier-Stokes Equations
	Function Space of the NSE
	The Pressure Poisson Equation
	Reformulation of the Pressure Poisson Equation
	Final Stable Reformulation of the Pressure Poisson Equation
	Equivalence of the PPE

	Galerkin Finite Element Method
	Weak Formulation
	Finite Element Approximation
	The Choice of Element
	Temporal Discretization
	Nonlinear Solver

	Numerical Experiment
	Flow on a square domain
	Results

	Conclusions
	Overview of Results
	Conclusion

	Bibliography
	Matlab Code
	Survey on Analytic Solutions
	Excerpts on Existence and Uniqueness

