Cracking the Humpty Dumpty Case:
Rebuilding Broken Objects with Linear Algebra

John Burkardt
Host: University of Pittsburgh Math Club

Department of Mathematics
University of Pittsburgh
7:30pm, Wednesday
704 Thackeray Hall

02 March 2022

T-puzzles by the Open Lab https://teaching.pitt.edu/open-lab/

The Humpty Dumpty Problem

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king's horses and all the king's men
Couldn’t put Humpty together again.

But maybe we can!

Ostomachion - (Archimedes, 287-212 BC)

L % L]
L 2
L 2 :
% % % 2
L 2
* - - *

Tangrams - (Song Dynasty, 960-1279)

N

The T Puzzle - (1800)

The Broken Chessboard (Dudeney, 1919)

~—
LO
O
(@)
i
P
£
S
o
Y
N—r
0
Q
(@)
£
£
o
>
O
(ol
<
(%2}
(D)
(@)
=
=
(@)
4+
c
(D)
o

Tetris (1989)

Eternity - (Mon

~AAININININING

Eternity - solved for £1,000,000 prize (Selby, 2000)

Puzzle Statement

Can we tile a 6x10 rectangle with the 12 pentominos?

L& T
Dﬂ%?%&éi%gy

OK, But Is It Math?

“One can guess that there are several tilings of a 6 x 10 rectangle using

the twelve pentominoes. However, one might not predict just how many

there are. An exhaustive computer search has found that there are 2339

such tilings. These questions make nice puzzles, but are not the kind of
interesting mathematical problem that we are looking for.”

“Tilings" - Federico Ardila, Richard Stanley

=

ol

Is it “Simple” Computer Science?

Sequential Solution: Backtracking

Is it “Clever” Computer Science?

Simultaneous Solution: Linear Algebra?

e

Linear Algebra can set multiple objects that satisfy multiple requirements.

Knuth: “Tiling is a version of the exact cover problem.”

Select columns of a 0/1 matrix so every row has a single 1:

010100
001 010
101000
A=]101 01 0 1
1 00 0 01
101 0 00
01 0011
010100
0 01010
101000
A=]101 0 1 0 1
100 0 01
1 01 0 00
01 0011

Exact Cover as a Linear System

Select columns of A so every row has a single 1.

This is equivalent to
Find x so that A*x=b where b is a vector of 1's.

Now this is linear algebra!

010100 1 1
0 01 010 0 1
101 0 00 0 1
01010 1 |F* 1| = 1
100 0 01 1 1
1 01 0 00 0 1
01 0011 1

Tile the Reid Polygon with 4 Dominoes

The Reid Equations: ¢ : eg

el e2

e3 e4 eb

eb e7 e8

The Reid Variables xq : xqg

x1 x3
x2 x4 xb

x6

x9 x10

We start to see how the equations and variables combine:
x1 + xg =1 Cell 1 must be covered once
x3 + xg =1 Cell 2 must be covered once

x1 + xo + x7 =1 Cell 3 must be covered once

The Reid Equations: 8 Equations, 10 Unknowns

(o

X1 X2 X3 Xy X X6 X7 X8 X9 X10

€1 X1 +X6 =
(S —|—X3 —|—X6

e3: X1 +xo +X7
€4 : X3 +Xa +X7 +Xg =
[X5 —+Xg

€6 - X2 “+Xog

er: X4 +Xo +Xi0
€g : X5 +X190 =

Il
I T = N = W SO S

O TS R R IR R
X X X X X X X X X £
O O OO OO
o)
: OO O OO+ - O
X coo-—H0OO0Oo
<
OO - - OO OO
OO OO O0oOOo
OO OO HO0OO -
OO O —-H OO +HO
O O - OO OO
OO - OO - OO0
—A O O O0OO0OO0OO0oO

0
c
=
(@)
c
'Y
c
)
(@]
i
i
c
.0
)
T
=
(ox
LLl
(0]
£
Q
=
n
>
0]
—
(g0]
[}
=
—
9
Q
o
Q
L=
T

Reduced Row Echelon Form of Reid Linear System

Notice that variables 7, 9 and 10 are free!

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 b
ep: 1 1 -1 =0
e : 1 1 =1
e : 1 1 -1 =0
e : 1 1 1 =1
65 : 1 1 =1
€6 . 1 -1 1 = 0
er: 1 1 = 0
€g . =0

Equation 8 disappears because once we have covered the first 7 cells, cell
8 is guaranteed to be covered.

Drop Zero Row, Add Degrees of Freedom

We add placeholder equations for variables 7, 9 and 10.

X1 Xo X3 X4 X5 Xp X7 X X9 X10 b
eg: 1 1 -1 = 0
e: 1 1 — 1
e 1 1 ~1 = 0
ey : 1 1 1 = 1
es : 1 1 = 1
e : 1 -1 1 = 0
fi: 1 = 07/1?
er: 1 1 = 0
£ 1 = 07/17

f - 1 = 07/1?

0
0
0
-1
0
1
1
1
1
1

-1
1
-1
0 0
0
2
1
1
0
1

1
0
1
-1
0
0
0
1
1
1

1
0
1

0
1
0
100
0
1
0
1
0
1

X1
X2
X3
X4
X5
X6 -
X7
X3
X9
X10

(0]
[0}
S
w
-
c
T
I
s}
J5
o0
o
>
o
T
=
(0]
(0]
—
L
0
=
.0
)
=
(@)
(Op)]

—~~
(%)
Q

=
Q)
>

—

O
c
(]

o

=
c
o

~—
0
=

.0

+—
=
o

w

Q2

0
(9]

=
o
(D]
Q
Q
<
4

v v/

X1 .

X2 .

X3 .

X4 .

X5 .

X6 -

X7 .

Xg .

X9

X10 -

The Reid Tilings (Labeled)

x6 x6
x8
x2 x4 xb x2
x10
x6
x1 x3
X7
x5 x5
x9 x9

Bigger Problems Need a Better Solver

The Reid linear system A*x=b was 8 equations in 10 unknowns. It was
easy to write a code to reduce A and b, via reduced row-echelon form;

then to deal with the free variables, and then to eliminate solutions with
unacceptable values. But for larger problems, this approach won't work.

The row-reduced echelon form (RREF) is very sensitive to roundoff.
We can't rely on MATLAB's rref (A) command, (real arithmetic).
A “hand-made” integer code can only handle small problems.
Tiling regions can have hundreds of cells (equations/rows = M).
Tiling problems can have tens or hundreds of tiles = T.

A tile may have roughly M configurations, not even counting
rotations and reflections (variables/columns N = T x M).

The linear system may have many degrees of freedom D.
The number of possible solutions we will need to check rises like 2°.

To solve interesting problems, need accurate, efficient integer solve

Accurate & Efficient A*¥*x=b Solvers!

Solving underdetermined integer problems A*x=b turns out to be an
activity of enormous interest, especially in the linear programming
community, in which the problem can include the request to optimize a
corresponding cost function ¢(x).

MATLAB Optimization Toolbox includes optimvar().
Fast and efficient solvers are freely available: CPLEX, Gurobi, SCIP.

Moreover, the linear programming community uses a simple LP file
format to describe such problems. So our task can be simplified:

@ Set up the problem, write it to an LP file;

e Call an appropriate integer linear programming solver;

@ Retrieve the solutions, count, plot, analyze;

Reid Example: LP file “reid.Ip"

\ The Reid problem

Maximize
Obj: O
Subject to
x1 + x6 =1
x1 + x7 =1
x2 + x6 + x8 =1
x2 + x3 + x7 +x9 =1
x3 + x10 = 1
x4 + x8 =1
x4 + xb + x9 =1
x5 + x10 = 1
x1 + x2 +x3 +x4 +xb + x6 + x7 + x8 + x9 + x10 = 4
Binary

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
End

Reid Example: Solving with CPLEX

(1) CPLEX> set mip pool absgap 0.0
(2) CPLEX> set mip pool intensity 4
(3) CPLEX> set mip limits populate 10
(4) CPLEX> set mip pool capacity 10
(5) CPLEX> set output writelevel 1
(6) CPLEX> read reid.lp

(7) CPLEX> populate

(8) CPLEX> write reid.xml all

Set the absolute gap for the solution pool to zero;
Aggressively seek all solutions;

Upper bound on solutions sought;

Upper bound on solutions stored;

Write all solutions to file;

Read LP file;

Seek solutions;

Write solution file.

00000000

Reid Example: Retrieving Solutions

Each package has its own way of reporting the solutions. CPLEX output
uses the XML format. If we use CPLEX to solve the Reid problem, then
each of the 4 solutions will be stored, along with much more information.

Here is what one Reid solution looks like:

<CPLEXSolution>

<variables>

<variable name="x2" index="4" value="1"/>
<variable name="x6" index="14" value="1"/>
<variable name="x4" index="8" value="1"/>
<variable name="x5" index="12" value="1"/>
</variables>

</CPLEXSolution>

This is the first solution we identified earlier, namely (0,1,0,1,1,1,0,0,0,0

The T Puzzle

Cleve Moler's T Puzzle GUI

T_puzzle

restart |
exit

Get a Copy of Cleve Moler's T Puzzle GUI

https://people.sc.fsu.edu/~ jburkardt/m_src/...
t_puzzle_gui/t_puzzle_gui.m

o Challenge (T, Arrow, Rhombus,
Fat Arrow)

Select a Piece

Rotate a Piece

Flip a Piece

Drag a Piece

© 606 6 o o

Solve...?

The Humpty Dumpty Problem

If the T puzzle is similar to the Reid problem, then presumably we can
construct a procedure that will automatically find all possible solutions.

But:

Each tile is a different shape;

The tiles are not simple rectangular shapes;

Some tiles have more reflections and rotations than others;

A rectangular grid of cells won't work; we have diagonal lines too.
The resulting linear system will be much larger than for Reid.

T Puzzle Grid

To accommodate various rotations, reflections, translations of the tiles,
we need a grid of 6 x 9 x 4 isosceles right triangles: 6 big squares, each
containing 9 little squares, each containing 4 triangles.

XD X
RESE Ry
REE Ry
RESE Ry
Ry
RRIKSBIRIKK

Boundary Word Compass

NW N NE
W E
SW S SE

From red dot, there are 8 possible directions.
N, S, E, W steps of length 1.
NE, NW, SE, SW steps of length %2

Boundary Word Description

Start at P=(0,0) (red dot)
Boundary path = 12 NE+ 4 W+ 6 SW+ 1 E + 3 S

Translate Boundary Word

Translate by (3,0): Start at P+(3,0) (red dot)
Boundary path = 12 NE+ 4 W+ 6 SW+ 1 E + 3 S

Reflect Boundary Word (Swap West and East)

Reflect: Start at P (red dot)
01d Boundary path: 12 NE + 4 W+ 6 SW + 1 E + 3 S
New Boundary path: 12 N\W + 4 E+ 6 SE+ 1 W + 3 S

Rotate (90°: N - W, W — S.S — E,E — N)

Rotate 90: Start at P (red dot)
0ld Boundary path: 12 NE+ 4 W + 6 SW + 1 E + 3 S
New Boundary path: 12 N\W + 4 S + 6 SE + 1 N + 3 E

The Whole Tile Must Be Inside!

12 121
10 10}
8 8
6 6
4 4
2 oL
0 0

Tile in Grid — Element Centroids in Grid

Because the grid and the tiles may be of strange, irregular, nonconvex
shape, we need to check that every triangular element of a tile is inside
the grid.

It suffices to verify that the centroid of each element is inside the grid.

A formula known as point in polygon can give us the answer. The
surrounding polygon does not need to be convex, but it can't be “weird”

(as in, the boundary crossing over itself).

[/
VL

O
5

7

Linear System for T Puzzle

Now we have the tools we need to build the linear system A% x = b.

There are 6 x 9 x 4 = 216 triangular elements. Each of them must be
covered exactly once. There are 4 tiles, each must be used exactly once.
This gives a total of 216+4=220 equations,

Each tile configuration (rotation + reflection + translation remaining in
grid) is a variable. The tiles vary in their number of configurations:

1 20 | long

2 2 | weird

3| 56 | trapezoid

4 | 70 | triangle
Total | 148 | The T

So we have to solve a 220 x 148 linear system, whose answers x can only
have the values 0 and 1.

We write the linear system as an LP file. In a few seconds, Gurobi returns
2 possible solutions. One is simply the left/right reflection of the other.

Arrow solution

The Arrow gurobi solution

Fat Arrow solution

The Fat T gurobi solution

Rhombus solution

The Rhombus gurobi solution

T solution

The T gurobi solution

4x5 Example: Region R

4x5 Example: Tiles

4x5 Example: Run the code

RREF system has 23 rows and 62 columns;
Augmented system has 42 degrees of freedom;
ALL binary right hand sides is 242 on the order of a trillion:

Only check binary RHS with at most 4 degrees of freedom set to 1:
14+42442%41/2+42x41%x40/6 4 42«41 x40 % 39/24 = 124,314;

Generated and solved all 123,314 right hand sides, found 4 binary
solutions in less than 7 seconds.

4x5 Example: Four Solutions

Tiling by Multiple Copies of a Single Polyomino

1 trimino, 4 orientations, 90+1 equations, 272 variables

1,168,512 solutions computed by CPLEX in 3.8 minutes.

Tiling by One Copy of Each Pentomino

12 pentominoes, 1/2/4/8 orients, 60+12+1 equations, 2056 variables

9,356 solutions computed by CPLEX in 7.3 minutes.

Tiling a Region with Holes

M B

|
1 [[

12 pentominoes, 1 or 2 copies, 118 equations, 2,619 variables

8 (equivalent) solutions computed by CPLEX in 0.4 seconds.

Tiling a Nonrectangular Region

hIC

8 octominoes, 4 copies each, 265 equations, 9,878 variables

1 solution computed by CPLEX in 13 minutes.

A Large Problem

e g

i
E

=

-r.|_ L

]
S EFT
o

g}ﬁ%ﬁﬂ nil}

[[I I

12 pentominoes, 20 copies each, 1,213 equations, 67,396 variables

8 (equivalent) solutions computed by CPLEX in 9.5 minutes.

Tortoise: A piece of Eternity (45/209 tiles)

o
RSl
=

P A

T

o
XN

O

AN PINANT
Iaﬁ.hwﬂrﬂbssrﬂagrﬂmﬁrﬂa-\lﬂrﬂm

NN ST TN DA TR
v ANV PAT7 \NANPA T AN TN AT A AT VA P VAN
ANV AN WAV WAVA7) WA) WAV VA g

PN AV AV S AV VA7 S A S A
AT IRA SIS IS

ST

P

RASTRALINALA
SALISALIRALIRA
ATRAIBIRALTA X

5

g:
¢
g!
."ﬁ. \
be:;
P
3
?’j

AV WAV WAV ATy VA AT
NPT PTNPTRAN
AN DR DTN S
PETANA TV AV AN
AWAVATANAVE7 WAV AT WAV
PN VAN A7 WAV SN
AT TN
INACTANLTNANY
IWAVE7AV PN P WA A
DAV SVTA\NAY A7 S T N
T NAA N AN
TES ANV WAV 227 7
AT AL A TRALY]
LAV WWAVIATY, WAVPA7/ ¥
N S AT AT
VAVA7ANAVAG WAV WA
ACTRAITTNA S
\NET AR

SRR
ST
7Y

Y/

—
(0]
Q
=
(@))
o
(Q\]
~
O
O
—
>
e
c
-
Q
-
L
G
(@)
Q
O
.0
o
<
o
c
T
—
(&)
=
(@)
(®]
a8}

Trying the whole Eternity puzzle (209/209 tiles)

T T T T
5000 -
4500 | i
4000 | N
3500 = -
3000 | -
g 2500 - 4
2000 F -
1500 -
1000 e
500 [b
i L L L L
0 05 1 1.5 2 25

time (8) 10°

Trying the whole Eternity puzzle (209/209 tiles)

We are running the Eternity problem on Gurobi.
Gurobi reduced our LP problem to a kernel of about 5,000 constraints.
While it works on them, it can display a plot of its progress.

1500 constraints done in 2,000,000 seconds

rate = 1333 seconds per constraint

5000 constraints * 1333 seconds = 6,665,000 seconds total.
6,665,000 seconds / 86400 seconds per day = 77 days.

Optimism: Could get a positive result in 6 more weeks.

Conclusion: Rebuilding with Linear Algebra

To solve a tiling problem, we look for an underlying grid of cells that
define both the region and the tiles. This isn’t always possible!

Equations: Each region cell must be covered, just once.

Equations: Each tile must be used, just once.

Variables: Each rotated, reflected, translated tile remaining in region
Equations + Variables: underdetermined linear system Ax = b.
Reduced Row Echelon Form lets us analyze the system.

Linear Programming Software solves big systems.

We seek binary vectors x whose entries are only 0 or 1.

There may be no such solutions at all.

If there are free variables, we may have multiple solutions.

Any solution x tells us exactly how to use the pieces so we can put a
broken object back together...

The Humpty Dumpty Solution

Humpty Dumpty thought he was through,
But linear algebra knew what to do.

It set up the system and solved it and then
Neatly put Humpty together again.

References

Cleve Moler's T Puzzle:
https://people.sc.fsu.edu/~jburkardt/m_src/t_puzzle_gui/t_puzzle_gui.m

https://www.mathworks.com/content/dam /mathworks/mathworks-dot-
com/moler/exm/chapters/puzzle.pdf

Online references:
https://people.sc.fsu.edu/~jburkardt/presentations/t_puzzle_2022_pitt.pdf
https://people.sc.fsu.edu/~jburkardt/m_src/t_puzzle/t_puzzle.html

Journal article:

Marcus Garvie, John Burkardt,

A New Mathematical Model for Tiling Finite Regions of the Plane with
Polyominoes,

Contributions to Discrete Mathematics,

Volume 15, Number 2, July 2020, pages 95-131.

