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Meshing: Rectangular Meshing
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Meshing: Points and Delaunay Triangles
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Meshing: Points and Voronoi Polygons

=( scientitic |
,\Computing/




Meshing: Centroidal Voronoi lteration

Voronoi, step 2
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Models: Physics and Geometry of the Earth
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Models: Physical Processes to Model

Community Earth System Madel Tutorial
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Representing the key atmospheric processes in CAMS5

Cloud
Macrophysics
and Microphysics

Aerosols

R ——

________ 2

Radation |

LW i

1
1
Ab sJEmIisnﬂ_l

i i
! Emission 1 FI H MO stability &2,
aT+,Deposition ), ____'f’_(f:"_ ! Fuws Fus Fen

9/34



Models: A Successful Prediction

[Tropical Storm Iszac
25,001

S Hatons Fumcane Cantr

CentrLocaion 0 75,3
NiocSustuned Wind o
Novemen 1ot 17 nph

2 20
@ Tropiea Cylane O PostTroieal
ustaneavings; D <

Forecast Positior
K s D <50 mp
3073 mph 1 74110 mph W 1omph

Watches:

[
Veop Stomn I s NN rop Storm

. =N
= s

95 a0
Tropical Storm Hermine

80
Current Inform:

ation: &

orecasl

=| scientific
omputing

>

10/34



Models: Millions of Nodes

We are working with a climate modeling group at Los Alamos
National Laboratory, whose MPAS software simulates the
interactions of the atmosphere, ocean, and land over the entire
globe.

They currently use meshes whose elements are about 15 kilometers
on a side, or roughly 200 square kilometers in size. The surface
area of the earth is about 510 million square kilometers; we need
about 2 million elements, defined by nodes for which we can
confidently say that they are about 15 kilometers apart.

PAS

Model for Prediction Across Scales
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Models: Transport becomes Local Trading
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First Draft: Bisection of lcosahedral Grid

The 12 vertices of the icosahedron are perfectly separated on the
sphere. If we triangulate these vertices, we get 20 faces. If we
bisect each edge, we can replace each face with four smaller ones,
which are no longer congruent, and no longer “perfectly” placed.
As we repeatedly refine this grid by bisection, the mesh degrades,
but is still very acceptable as a starting point.

leosahecral sphere grid Icosahedkal spherc grid




First Draft: STRIPACK-based Algorithm

Choose n initial points g using the bisection grid;

while ( true )
v := Voronoi diagram ( g );
Compute c(i) = centroid of Voronoi polygon for g(i);
test = norm (g - ¢ );
g <== c;
if ( test <= tolerance ) break;

t = Delaunay triangulation ( g )

construct final mesh from g, v, t
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First Draft: STRIPACK processes a 42 node grid




First Draft: Timing for One lteration

For a 15 kilometer element width on the Earth, using uniform
elements, we need about 2,000,000 elements. Starting nodes are

created by “bisecting” an icosahedral set of nodes. Times

increasing like N2.

BISECT Nodes | Name Time (seconds)
0 12 5.E-5
1 42 1.E-4
2 162 4.E-4
3 642 6.E-3
4 2,562 0.066
5 10,242 0.660
6 40,962 | coarse 10.161
7 163,842 | medium 170.798
8 655,362 3,207.510
9| 2,621,442 | fine 51,954.900

10 | 10,485,762
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TRIANGLE: Sequential Delaunay in Plane

RS OEASA A
KR ’iﬁvy"“i‘v"

)
A
55
vy
QA
IRA
N\

K
0
0%
2

N

<K

I
A
AV
\/

N

SRR
O
DR

W

}"
&
VAV
AV

AN

%
A
Tk
o

N

W\

N/ A\ i
DY AR K AR
O S s S ATTAAS SV
ORISR ARRDEAN

%
A%
s
SOORS
BX
I AVYaNAY

greeniand
A
SRR
]
R

ra¥e
)

1T
iy
i
iy

v
i

avivy
v

hy
i

Ly

ravary
RGO
o

o

{7

Ty

3
5
SR

AV,

VAN

i

o
;.«VIA'

o

12
o

i

i
</
X

2
g
i
%

e

120
171
=
%)
vy
e
)
(g
é'
s
B
7

RERRA

o

(0

P
@

R,
HEEY
5

%
z
k]
o
2
7
L
55
o
=
£
:

s
e
s

2z

s
o
v

th

i
At
i

WAV

o0
o
L

Vi
b
L
0
bR
1‘.!5 e A Ay
5
SEehs
foh T

5
2

52

AT
KLY
R

7
Ly
yAVAY
Vé‘

o

PEAAAST R
5 FORRES
A
Vi
o

‘,'.
H
3y
ess
SR
R
%)
e
)
e
e

....
Vi
“

Y axis-
%
5
I
5
)
v
A
2
ol

%
4§4v

S
e
s i
S
RIS

2

SVAY
0
S

Z
o

%)

%

17

19
E
sty
o
£

5
7
A
=

VAV
SO0

e
o
)

Bt RS
T ST
e e e
AVAw ST =)

o
g
717
v
s
e')
”
%)
s
el
e

o
KA
iy

4

A
i

5
\ FaTATAS

SN SNAVAVANAN; AT 'YAXGIGEA i

RERERER ek dees o

b I DA DO REE

SRusesisiiea

o
oy
:
§4
i
AVAY

PRSI
s

SYAVATAVAY

[ Svimaary
[

4)

A
‘E

~f

VAVAVATAN,
VAVATAVAVATAY
S AAVAYAYY

Vi
VANV AVAVY

4
{%‘uvm‘uv‘
o

e

pYAY
Ky
A
4
o
V%
e.
A

VAVAY

KDRRISEG
SNSRI




TRIANGLE: Same Problem Sizes as STRIPACK

BISECT Nodes | Name STRIPACK | TRIANGLE
Seconds Seconds

0 12 5.E-5 0.025
1 42 1.E-4 0.023
2 162 4 E-4 0.023
3 642 6.E-3 0.026
4 2,562 0.066 0.033
5 10,242 0.660 0.057
6 40,962 | coarse 10.161 0.178
7 163,842 | medium 170.798 0.707
8 655,362 3,207.510 2.649
9| 2,621,442 | fine 51,954.900 11.108
10 | 10,485,762 ? 76.304
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TRIANGLE: Opportunities for Parallelism?
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TRIANGLE: Opportunities for Parallelism?




TRIANGLE: Opportunities for Parallelism?
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SPHERE: Empty Circumcircle Condition

In ciccle ABE Incircle ADE

Drelaubay Triangulation  Won-Dielaunay Toangolation Mob-Delannay Triangulation
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SPHERE: Mapping between Plane and Sphere
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SPHERE: Mapping Preserves Circles




SPHERE: Proposed CVT Algorithm

Choose n initial points g using the bisection grid;
Processor p* gets nodes g* + nodes gx* of neighbors;

while ( tolerance < test )
Stereograph g* + gx*x to plane;
Compute local planar Delaunay triangulation ( gk+gk* )
Construct all spherical triangles that include any g* 1
Accumulate c* = centroids of Voronoi polygons for gk;
Compute local test = local norm ( gx - c* );
Replace g* <== c*;
Update node information with 6 neighbors;
Gather local tests into global test;

Merge local Delaunay triangulations;
Compute Voronoi diagram;
Construct mesh (nodes, polygons, connections). 26/34




SPHERE: Speedups for local triangulation and merge

Computations for a “medium” grid of 163,842 nodes.

Algorithm Procs | Regions | Speedup | Comment

STRIPACK 1 1 1 | Used for local and mer
MPI-SCVT L 1 2 57 | Smallest code uses
MPI-SCVT L+M 1 2 21 | 2 processes.
MPI-SCVT L 42 42 4092 | Called thousands of tir
MPI-SCVT L+M 42 42 37 | Called once, at end.
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EXAMPLES: Uniform Mesh Near Florida Coast




EXAMPLES: Uniform Mesh Near California Coast
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EXAMPLES: South America Land/Ocean Interface
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MPI Issues

@ The sphere surface naturally subdivides into 12, 42, 162,
subregions;

e We can use any number of subregions (but at least 2!), but
icosahedral bisection has advantages;

@ For 2 million nodes, the 42 subregions leaves enough work for
each MPI process;

@ The regularity of the subregion connectivity means just 6 MPI
Sends and Receives per process on each step;

@ Only at the end of the iteration is a global MPI gather needed
in order to assemble the mesh;

@ If a nonuniform density is applied, the assighment of nodes to
processors must be adjusted;
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The work described here represents in part the PhD dissertation
of Doug Jacobsen, while he was a student in the FSU
Department of Scientific Computing.

Max Gunzburger and Janet Peterson were his advisors, leading
a research group that included me.

The motivation for a smooth polygonal mesh of the earth came
from Todd Ringler of Los Alamos National Laboratory.

Doug used to arrive at school even earlier than | did, and always
had a question or mathematical issue or programming problem to
discuss with me. Doug was in my introductory workshop on MPI; |
showed him stereographic mapping, spherical geometry, the
STRIPACK and TRIANGLE packages and how to use Delaunay
information for Voronoi calculations.

The ideas for doing the Delaunay triangulation in parallel, for
exploiting the icosahedral grid, and the computer implementation 35,3,
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Conclusions

@ Stereographic mapping allows us to transfer hard work on the
sphere to simple work in the plane

@ Mapping TRIANGLE results onto the sphere is faster than
working directly on the sphere with STRIPACK;

@ The planar Delaunay triangulation can be parallelized,
including the merge step;

@ Therefore, the sphere triangulation can be parallelized;

@ This procedure provides an efficient parallel solution to a
costly calculation;

@ Nonuniform density? Constraints? Subregion meshing? (All
can be handled)
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