Useful Mathematica Commands A Summary for MATH 166
Mathematics Department,

lowa State University
Fall 1996

Introduction

This document describes the Mathematica commands and options that you may find useful for your assign-
ments in this class.

The commands covered are listed in the Table of Contents.

If you are using the HTML document, and you have registered properly, you will be given a username and
password, which will allow you to use the document interactively. For details, see The HTML Document.

1 Table of Contents
Table of Contents:

e IntroductionIntroduction

e The Mathematica Notebooks
— Accessing the Notebooks

e The HTML Document
— Executing Mathematica in HTML

e Advanced Functions

e Animation

e Apart

e AspectRatio

e Assignment statements

e AxesLabel

e AxesOrigin

e Clear

e Comments

e Cube Roots

e D (differentiation)

e Do

e DisplayFunction

e DSolve

e Expand

e Factor

FindRoot
GridLines

Infinite Series
Integrate

Limit

ListPlot

Lists of Data

N (Numeric value)
NDSolve
NlIntegrate
NSolve

NSum
ParametricPlot
Plot

Plot and D Don’t Mix
PlotLabel
PlotRange

Polar Grids
PolarPlot

Prime

Print

RGBColor
Sampling Plot Coordinates
Sequences

Series

Show

Simple Functions
Simplify

Solve

Special Constants

Special Functions

e Sum

SurfaceOfRevolution

Table

TableForm

Together

2 The Mathematica Notebooks

One version of this document is available in the format of Mathematica notebooks. The explanatory part
appears in text cells, while the Mathematica commands being discussed appear in command cells.

These commands may be easily executed simply by clicking in a particular command cell and pressing the
Enter key, or holding down the Shift key and pressing Return.

The output from such a command will appear just below the command. You can easily modify any of the
commands, or type in new commands that you wish to try. You may print all or a portion of the document,
using the Mathematica Print command from the File menu at the top of the window.

2.1 Accessing the Notebooks

The Mathematica version of this document is available as several notebook files in the Mathematics Depart-
ment Computer Lab, which is open to all ISU students.

To access the notebooks, you first need to “discard” any old connection to the Mathematics Delta Server, if
someone else accessed it before you. Look along the right margin of the Macintosh Desktop for a little object
labeled “Delta Server”. If you find it, place your cursor on its icon, press and hold the mouse button, and
drag the cursor (and the Server) into the trash can. Release the mouse button to discard the old connection
to the server.

Secondly, you need to make a new connection to the Delta Server, which recognizes that you are entitled
to access, and are in Math 166. Go to the “Apple” menu in the upper left corner of the screen, and select
Chooser. Now click on AppleShare. AppleShare should show that you are in the “MathLab” zone. Now
click on the Delta Server. The Macintosh will request authentication. The instructor for your calculus
class will have told you what to type here. Once you have been authenticated, a new symbol should appear
on the desktop, representing the Delta Server.

Now, to get one of the files, open the Delta Server (that is, click twice on its icon). Open the Classes folder,
then Math 166, and finally Labs. The files commandsl, commands21 and commands32 should be
visible now. You should copy each file to the local hard disk, by clicking once on its icon and dragging it to
a free area of the desktop.

To examine the contents of one of these files, click twice on one of them. This will cause Mathematica to
begin running, and displaying the information in the file.

3 The HTML Document

One version of this document has been marked up using HTML, and can be accessed by an Internet broswer,
such as NetScape. The document is broken down into subpages devoted to a particular command.

Through tools developed by the (Undergraduate Computational Engineering and Sciences Project) at Ames
Laboratory, a person browsing through the HTML document can actually execute the Mathematica com-
mands discussed, and see the numeric or graphic output in a small window below the main browser window.

3.1 Executing Mathematica in HTML

If you are authorized for the remote server, then to execute a Mathematica command, click on the colorful
arrow icon that is just to the left of the command. The first time you do this, the following text should
appear in the smaller box below the main one:

How do you prefer to run Mathematica:
SUBMIT when you’re done:

0 I have both hamlet and Mathematica on my machine.
0 I’11 cut-n-paste the commands from my browser to Mathematica.
0 Use a remote server (requires a proper username and password).

Click on Use a remote server (that is, click on the little open diamond O in front of those words). The
open diamond should change to a filled diamond.

Then click on SUBMIT. The remote computer will ask you for a username and password. Once you are
authenticated, the results of your Mathematica commands will appear in the same box below the main one.
You will not be able to enter new commands of your own, however.

4 Advanced Functions

The simplest user-defined functions are the “one-liners”, where the quantity of interest can be computed by
a single formula. Such formulas are discussed in Simple FunctionsSimple Functions ()Simple Functions.
In some cases, you may find it impossible to define the function’s value in a single simple formula. Instead,
you may need to carry out several steps of computation, using temporary variables.

You may want several input values, and you may want the user to group some of those input values in curly
brackets.

Here is an example of a user-defined function, which computes the left Riemann sum approximation to the
integral of a function f[x] from a to b, using n intervals:

Clear [, leftRsum, x]

leftRsum| f_, {x-, a-, b_, n_} | :=
Block[{approx, delx, i},
delx = (b—a)/n ;
approx = N[Sum[(f /. x—>atdelxx*i)xdelx, {i,0,n—1}]]
]

The first line defines the name of the function to be leftRsum, with 5 arguments. The last four arguments
must be enclosed in curly brackets.

The Block command marks the beginning of a group of commands that will carry out the procedure named
leftRsum.

The statement {approx, delx, i} defines local variables, that is, names for variables which will be set and
used within the procedure, but which are not function arguments, and which should not alter the values of
variables with the same name, defined outside the procedure.

The first assignment command has a semicolon after it to suppress output. The value returned by the
function will be the last value computed, namely, the value of approx..

The assignment of approx carries out the Riemann approximation, and causes the function leftRsum to
return this value.

As an example of how such a routine might be used, consider the following commands:

flx-] := x"2

leftRsum [f[x], {x, 0, 10, 5}]

For other examples of this kind of function, see the discussion of Cube RootsCube Roots ()Cube Roots or
Polar GridsPolar Grids ()Polar Grids.

5 Animation

Warning: It is not possible to try out the animation feature in the HTML document!

If you draw a sequence of plots, you can have Mathematica animate the plots, that is, display them one after
another, as though they were individual frames of a movie.

To make an animation, you must first generate a sequence of plots, using any of the usual graphics commands,
such as ListPlotListPlot ()ListPlot, ParametricPlotParametricPlot ()ParametricPlot or PlotPlot ()Plot.
You should try to make sure that each “frame” or plot has the same shape (what Mathematica calls the
AspectRatioAspectRatio ()AspectRatio), and uses the same x intervals, and the same y intervals (which
you can control with the option PlotRangePlotRange ()PlotRange).

Here is a very simple set of frames that show how the shape of the function y = a * 2% + 2 + 1 will change
as the coefficient a is varied.

‘ Clear [a,f,p0,pl,p2,p3,p4,p5,x]

‘ fx_]:=a*x"3+x+1

a=0;
p0=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

a=1;
pl=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

a=2;
p2=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

a=3;
p3=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

a=4;
p4=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

a=>5;
p5=Plot [f[x], {x,—2,2}, PlotRange—>{—2,4}]

If you are not using a notebook interface, it is possible that you can animate these plots using the command:

ShowAnimation [{p0,pl,p2,p3,p4,p5}]

In the notebook interface, we “select” the frames to be animated - that is, we place the cursor near the
bracket on the right margin of the first plot and click once. Now hold down the shift key, and click in the
right hand brackets of all the other plots you want to include in the animation.

Now go to the Graph menu and select Animate Selected Graphics. This should cause a brief animation
of your plots to be displayed. It will probably be over too quickly for you to enjoy. In that case, go back to
the Graph menu and select Animation. This will give you a menu that will allow you to specify how many
frames per second should be displayed, and whether the animation should loop forward only, or forward and
back again. A little experimentation should make a pleasing display.

6 Apart
p(x)

q(x)
q().
The Apart command can be used to replace a polynomial fraction by a “whole” part, and a new fraction
with the same denominator, but a “proper” numerator. This is similar to changing the “improper” fraction
17/5 to 3 + 2/5.
The Apart command, applied to a polynomial fraction, is essentially carrying out the method of synthetic
division. Synthetic division is a useful simplification, and is mandatory before applying the method of Partial
Fractions to an improper polynomial fraction.

A polynomial fraction is said to be improper if the degree of p(x) is greater than or equal to that of

‘ Clear [x]

‘ Apart|[(x"3 4+ 2xx"2 — x + 4) / (x"2 + x + 1)]

In the next example, we can see that Mathematica is not only dividing out the improper part of the polynomial
fraction, but is also factoring the denominator and applying the method of Partial Fractions:

Apart [(x"54+4x"442x"3—7Tx"24+4x+1)
/ ((x°241) * (x+3)72)]

The command TogetherTogether ()Together reverses the operation of Apart.

7 AspectRatio

AspectRatio is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot,
ParametricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.

Suppose we want to plot a quarter circle and a 45 degree ray. We could execute the following Mathematica
commands:

‘ Clear [, g, x]

|

‘ f[x-]:=Sqrt[1—x"2]

|

‘ g[x-]:=x

|

‘ Plot[{ f[x], g[x]}, {x,0,1}]

|

Unfortunately, the curve doesn’t look like part of a circle, nor is the ray at 45 degrees, because Mathematica
has chosen different x and y scales. We can force these scales to correspond to the relative lengths signified
by the actual coordinates by specifying the AspectRatio -> Automatic option:

‘ f{x-]:=Sqrt[1—x"2]

‘ g[x-]:=x

‘ Plot[{ f[x], gl[x]}, {x,0,1} , AspectRatio—>Automatic]

You may also specify a numeric value for the AspectRatio. For instance, setting AspectRatio -> 2 makes
a new plot that is twice as high as the actual data would justify.

8 Assignments

The easiest way to give a variable a value uses a single equal sign, as in x = 1. This causes Mathematica to
find the value of the right hand side of the equals sign, and assign that value to the variable named on the
left hand side.

’ Clear [x, y] ‘
W \
’ y = 10xx+1 ‘

When a single equals sign is used in an assignment, then the variable on the left hand side is given a value
immediately. If the quantities on the right hand side are later changed, this will not affect the left hand side.
For instance, let’s set x to 1, and set y to be two times x, using a single equals sign.

= |
o= |
E |
BE |

If you want to specify that y should change whenever x changes, then you need to replace the single equals
sign by the combination “colon-equals”.

’x:1; ‘

The double equals sign is used when describing a mathematical equation, rather than an assignment. Thus,
to ask the command SolveSolve ()Solve to find the values of x that make a certain equation true, we write

Solve[4x+2y==3z-1, x].

The double equals sign tells Mathematica that we are not trying to assign a value to the quantity 4x+2y,
whereas a single equals sign would confuse it.

Often you don’t want to assign a single value, but to set up a functional relationship. To see how to do this,
refer to Simple FunctionsSimple Functions ()Simple Functions.

To see how to assign values to a vector or matrix, refer to Lists of DataLists of Data ()Lists of Data.

9 AxesLabel

AxesLabel is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot,
ParametricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.
AxesLabel allows you to label the x and y axes of your plot.

Clear [t]

Plot [1-Exp[—t], {t,0,1},
AxesLabel—>{”Time” , ”Radiation”}]

10 AxesOrigin

AxesOrigin is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot,
ParametricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.
Sometimes, Mathematica will not include the origin in your plot:

‘ Clear [x]

‘ Plot [Sin [x]+4, {x,1,10}]

If you want the point (0,0) included, with both axes going through it (or at least pointing towards it) then
you might use the AxesOrigin option:.

Plot [Sin [x]+4, {x,1,10}, AxesOrigin—>{0,0},
PlotLabel—>"Same plot, with AxesOrigin command” |

Of course, a sneaky way to force the x axis to show up is simply to include the line y=0 in your graph. The
funny thing is, this graph is a lot nicer than the previous one!

‘ Plot[{ Sin[x]+4, 0}, {x,1,10}]

11 Clear

The Clear command tells Mathematica to “forget” anything you may have said about a variable or formula,
allowing you to redefine it or use it in a new way. This is important, because the commands D (differentiate)D

()D, IntegrateIntegrate ()Integrate, and PlotPlot ()Plot will not work properly if the “x” argument has
been previously assigned a numerical value. Here is a sample Clear command:

‘ Clear [x]

|

Here is a case where Clear is necessary. Because x is set to 1, theD command cannot be carried out until
a Clear command “frees up” x:

| x=1

\ I S =] 52

‘ Clear [x]

\ D m =], 5]

In this document, we use Clear as the first command in every example, so that variables left over from other
examples won’t affect the current example.

12 Comments

When you are using Mathematica to solve a homework problem, it can be important to explain what you're
doing, or to “annotate” your results. There are three simple things you can do.

First, you can use text cells. A text cell is a part of a Mathematica notebook that is set aside for text, rather
than commands. To make a text cell, you simply start a new cell, and then select the cell in the usual way,
by clicking in the little cell marker in the right hand margin. Then, go to the Style menu, then to the Cell
Style submenu, and choose Text. From now on, anything you type in this particular cell will be considered
text. Mathematica will print it in plain style rather than boldface, and won’t try to execute your sentences
as commands.

The second thing you can do is simpler, though less pretty. You can cause Mathematica to ignore a piece
of text by marking it as a “comment”. You begin a comment with the symbols (* and end with *). Thus,
Mathematica won’t be confused by the following commands:

‘ Clear [area, r]

‘ r=4

(x This command computes the area of the circle! x)
area = Pi * r"2

The third thing you can do to comment your commands is simply to use short strings of text, marked off by
double quotes, to add labels or explanations to the numbers you compute. In this case, the quoted string
will actually be printed out right next to the number you compute.

”

‘ area = N[Pi % r"2] 7 is the area of the circle.

|

This is not always a great solution. For one thing, you can’t do any more calculations with area, because
its value is not a number; it’s a number followed by a string. For another, Mathematica has many rules for
rearranging results that may hurt your intended output. For instance:

”

‘ area = Pi * r"2 ” is the area of the circle.

13 Cube Roots

We know that negative numbers don’t have square roots - at least not in the real number system, so we are
not surprised that Mathematica will not plot the Sqrt function over a negative range, and returns a complex
value for the square root of -3.

However, we do expect that negative numbers have a cube root, and so it is very surprising to see that
Mathematica has a strange idea about this:

N[(=1)7(1/3)]

And because Mathematica returns complex values for such cube roots, you can’t plot the cube root function
the way you might like:

’ Plot [x"(1/3), {x,—2,2}] ‘

However, it is fairly easy to set up a function that returns the cube root we expect:

’ Clear [cuberoot | ‘

cuberoot | x- | :=
Block[{value},
| value = Sign[x] * (Abs[x]) " (1/3)

This function allows us to compute the cube roots we expect:

’ cuberoot[—1] ‘

and to plot the whole function:

’ Plot [cuberoot [x], {x,—2,2}] ‘

The same problem occurs for all odd roots of negative numbers, and can be corrected similarly.

14 D (Differentiation)

The command DJ f[x], x] will differentiate the formula or expression f[x] with respect to the variable x.

’ Clear [, x] ‘

’ D[x"24+2#x+1, x] ‘

’ f[x-]:=Cos[x]+x ‘

| Dlflx].x] |

You can also compute higher order derivatives:

’ D[x"24+2%x+1, {x,2}] ‘

The D command will not work properly if the (symbolic) variable of differentiation has been assigned a
numeric value. In such cases, you must first use the command ClearClear ()Clear, to “free up” the variable.

’ x=1 ‘
’ D[Cos[x] ,x] ‘
’ Clear [x] ‘
’ D[Cos|[x] ,x] ‘

If you have written your expression as a function of a variable, then you may also compute the derivative
using an apostrophe or “prime”, while the second derivative uses two primes:

’ f[x-]:=Cos [x]+x ‘

’ £ [x] ‘

10

’ 299 2]

You can use f’[x] in the commands PlotPlot ()Plot or SolveSolve ()Solve.

’ f[x-]:=8Sin[x]

’ Plot[f’[x], {x, 0, Pi}]

You may be interested in seeing the example Plot and D Don’t MixPlot and D Don’t Mix ()Plot and D

Don’t Mix.
Table of ContentsTable of Contents ()Table of Contents.

15 DisplayFunction

Sometimes, you don’t immediately want to see the output of a graphics command such as ListPlotListPlot
()ListPlot, ParametricPlotParametricPlot ()ParametricPlot, or PlotPlot ()Plot. Instead, you plan to set
up several plots, and then show them together with the command ShowShow ()Show.

You can easily hide the preliminary plots, and only show the composite one, by using the DisplayFunction
option:

’ Clear [plotl, plot2, x]

plotl = Plot[Sin[x], {x,0,Pi/2},
DisplayFunction—>Identity]

plot2 = Plot[1, {x, Pi/2, 3.0},
DisplayFunction—>Identity]

Show[plotl, plot2,
DisplayFunction—>\$DisplayFunction]

16 Do

The Do command allows you to make a loop that repeats one or more operations. The format of the Do
command is

Do [
{ commandi,
command?2,

last command } ,
{ counter, start-value, end-value, increment}]

For instance, the following Do loop calculates the square of the odd numbers between 1 and 9 and then
prints out the number and its square.
Warning: this command won’t produce any output in the HTML document!

Clear [n, nsquare]

Do |
{ nsquare = n"2,
Print ["’n=", n, ” n squared= " ,nsquare] },

{n, 1, 9, 2}] }

11

In this Do loop, the commands to be repeated are grouped inside the curly brackets. (If there is only one
command, you don’t need the brackets). After the commands comes an iterator, similar to what you’ve seen
for the command TableTable ()Table. This tells Mathematica

e the counter variable (n in our case);

e the starting value of the counter (1);

e the ending value of the counter (9);

e how the counter variable increases on each step (add 2 to the previous value).

The Do command can carry out a simple method of approximating the solution of a differential equation.
(Of course, the DSolve command is better, if you can use it.) Let h, v, and a represent the height, velocity,
and acceleration of a ball under the influence of gravity.

Set the initial values at time 0:

‘ Clear [a, dt, h, v]

| h[o)=200;
| vio)=50;
| alo)=-32
| dt=0.5

And now use a Do statement to compute new values, using the approximation:

h(t +dt) = h(t)+dtxv(t) (1)
v(t+dt) = v(t)+dt*alt) (2)
a(t+dt) = —32 (3)
Do|
{ h[i—1]+de*v[i—1],

hli]=
v{%}fv[ifl]ert*a[i —1],

We can make a plot to see what we have computed:

‘ ol S ek A e o0 P

‘ ListPlot [hvals]

Table of ContentsTable of Contents ()Table of Contents.

17 DSolve

The DSolve command solves a differential equation, using exact techniques. If this command cannot solve
your equation, you may need to look at the command NDSolveNDSolve ()NDSolve instead.
DSolve requires you to specify the following information:

12

e the differential equations and the initial conditions;
e the names of the dependent variables;
e the names of the independent variables.

For a simple example, let’s solve

dy 2y

2J _2d 4

dx x (4)
with initial condition:

y(1) =1 (5)

which has the solution y = z2.

Notice that when you specify the differential equation and initial condition, you must use the double equal
sign.

‘ Clear [x,y] ‘

‘ solution = DSolve[{ y’[x]==2xy[x]/x, y[l]l==1 }, y[x], x] ‘

If you named the output of the DSolve command, then you can plot it, or use it in other formulas, as long
as you use the “replacement operator” symbolized by “/.”:

‘ Plot[y[x] /. solution, {x, 1, 5}] ‘

Table of ContentsTable of Contents ()Table of Contents.

18 Expand

The Expand command is most useful when you want to force Mathematica to show you an expression in
polynomial form, which is currently written as a set of factors, or as a polynomial raised to a power.

‘ Clear [x] ‘

‘ Expand|[(x+1) x (x—3)"2] ‘

The command FactorFactor ()Factor can undo the Expand command.
Table of ContentsTable of Contents ()Table of Contents.

19 Factor

The Factor command takes a polynomial expression and tries to write it as a product of factors. This is
similar to replacing 12 by 2 * 2 * 3.

‘ Clear [formula, x] ‘

‘ formula=4xx"5 + 8*x"4 — 3%x"3 — 9%xx"2 ‘

‘ Factor [formula | ‘

The command ExpandExpand ()Expand can undo the Factor command.
Table of ContentsTable of Contents ()Table of Contents.

13

20 FindRoot

The FindRoot command tries to find one value for a variable that will make an equation true. The command
uses approximate techniques, so the answer is always a number, and it is not exact. The command requires
that you supply a starting point, or guess, for the root, and the command may fail if the starting point is
not good enough.

When you specify the equation to be solved, you must use the double equal sign.

‘ Clear [x]

|

‘ FindRoot[x°2 — 7, {x, —2.0} |

|

FindRoot can find roots for problems that the commands NSolveNSolve ()NSolve and SolveSolve ()Solve
can’t handle. Don’t forget, though, that FindRoot can only find at most one root when it is called, no
matter how many roots there actually are. For this next problem, there are roots at 2 and 4, but we’ll only
hear about one of them.

‘ FindRoot[2"x = x"2, {x, 3}]

|

Warning: If the variable you are solving for already has been assigned a value through an equals sign, then
the output of FindRoot will be garbled.

‘ x = 17;

|

‘ FindRoot[x"2 =— 4, {x, 3}]

|

In this case, you should use the command ClearClear ()Clear just before the FindRoot command, to “free
up” the variable x.
Table of ContentsTable of Contents ()Table of Contents.

21 GridLines

The GridLines option to the commands ListPlotListPlot ()ListPlot, ParametricPlotParametricPlot
()ParametricPlot and PlotPlot ()Plot allows you to request that grid lines be included in your plot. The
option GridLines -> Automatic has Mathematica choose the placement of the lines:

‘ Plot[Sin[x"3], {x,—2,2}, GridLines—>Automatic]

You may also choose the location of grid lines yourself, by specifying a list of x coordinates and a list of y
coordinates. You may want to add the option AspectRatioAspectRatio ()AspectRatio so that the units of
measurement are the same in both directions.

Plot [ArcTan[x], {x,—2,3},
GridLines—>{ {—2, —1.5, —

]‘1 b 3 '51 2}7
{—1, —0.5, 0,

AspectRatio—>Automatic]

To see how to define grid lines for a polar plot, see the discussion of Polar GridsPolar Grids ()Polar Grids.
Table of ContentsTable of Contents ()Table of Contents.

22 Infinite Series

An infinite series is an expression that represents the sum of an infinite sequence of quantities. There is
a standard mathematical notation for infinite series. For instance, to represent the infinite sum S of the

14

1 1 1

quantities 1, 5, 7, 5, -, we would write

1

s=35 (6)

NE

i=1
Using limits, it may be possible to assign a value to an infinite series. We do this by considering the behavior
of partial sums in the limit. For instance, let us write S,, to represent the sum of the first n terms of the

series. That is,
G|
Sn=) 5 (7)
i=1

Certainly, for any n, we can compute this quantity. The first few values of S, are 1, 1.5, 1.75, 1.875, ... and
we might guess (correctly) that the value of S, never reaches 2, but can be made as close to 2 as we want
by choosing n large enough. In other words,

lim S, =2. (8)
n—>00
In some cases, the limit is infinite, and we say that the series diverges to infinity. In other cases, there is no
limit at all, and the series cannot be assigned any value.
Therefore, you might think that one way to analyze a series with Mathematica is to define the sequencesequence

()Sequences of partial sums, and then apply the command LimitLimit ()Limit. For our simple series above,
here is how we could do this:

‘ Clear [n, partial] ‘

‘ partial [n_.] := Sum[1/27i, {i,1,n}] ‘

‘ Limit [partial [n], n—>Infinity} ‘

Such an answer is useless. Mathematica is telling us it doesn’t know how to handle this extremely simple
problem. We can try another approach: simply use the Sum command with an infinite upper limit:

‘ Sum|[(1/2)"i, {i,1,Infinity}] ‘

This seems to be getting us nowhere! Actually, however, Mathematica has computed the answer, but we
have to force it out with the command NN ()N!

\ N[Sum[(1/2)"i, {i,1,Infinity} |] ‘

Another useful tool is the Ratio Test, which considers the limit of the absolute value of the ratio of the
n+1-st and n-th terms. If this limit is less than 1, then the infinite series has a (finite) limit. If the limit is
greater than 1, then the infinite series diverges, while if the limit is exactly 1, the test is inconclusive. We
can make this test easily:

‘ term[n_] := 1/2°n ‘

‘ Limit|[term[n+1] / term[n], n—>Infinity} ‘

You may also want to refer to the discussion of SequencesSequences ()Sequences.
Table of ContentsTable of Contents ()Table of Contents.

15

23 Integrate

The Integrate command can be used to compute the indefinite integral of a function.

‘ Clear [c,x] ‘

‘ Integrate| x"2, x] ‘

Notice that Mathematica does not tack on a symbolic constant like C to the answer. If you want to impress
your instructor, you can do it yourself:

‘ Integrate [Sin[x], x] + ¢ ‘

The Integrate command can also be used to compute the definite integral. In this case, you must enclose
the variable of integration and the limits of integration in curly brackets.

‘ Integrate| x"2, {x,0,3}] ‘

In some cases, the Integrate command can compute answers in which the lower limit is minus Infinity or
the upper limit is InfinityInfinity, ()Special Constants:

\ Integrate[1/x°3, {x,1,Infinity} | ‘

Integrate can easily handle definite integrals involving symbolic limits, which is useful when considering an
improper integral. (Of course, Mathematica can handle improper integrals easily, but we may want to see
the steps ourselves.) For instance, here is one way we could compute the value of the improper integral of

1
— from 1 to Infinity:
x

‘ Integrate|[1/x°2, {x,1,b}] ‘

‘ Limit[1 — 1/b, b->Infinity} ‘

If Mathematica does not know an exact antiderivative of the function, then it will simply reprint the input
you typed. If you don’t think Mathematica is going to give you a useful answer, and you need a definite
integral (not an indefinite one!) with numeric (not symbolic!) limits, then you can try using the command
NIntegrateNIntegrate ()NIntegrate instead.

Table of ContentsTable of Contents ()Table of Contents.

24 Limit

The Limit command is used to compute the limit of an dependendent variable or expression as some
independent variable approaches a special value.

‘ Clear [f, h, x] ‘

‘ fx_]:=x"3 ‘

‘ Limit| (f[xth]—£[x])/h, h—>0] \

Mathematica can also seek limits as a variable goes to positive or negative InfinityInfinity, ()Special Con-
stants:

‘ Limit [(7*x+1)/x, x>Infinity] ‘

By the way, Mathematica can handle the commands IntegrateIntegrate ()Integrate and SumSum ()Sum
with an upper limit of InfinityInfinity ()Special Constants. The result should be the same as applying the
appropriate Limit command when the upper limit is a finite symbolic value.

Table of ContentsTable of Contents ()Table of Contents.

16

25 ListPlot

The ListPlot command allows you to make a plot out of pairs of data values. In the simplest case, you
simply have a single list of data which we’ll call y:

’ Clear [i, pairs ,xvals ,y,yvals] ‘

’ y=4{ 1.1, 2.4, 2.2, 2.7, 5, 1.0, 4 } ‘

’ ListPlot[y, PlotJoined—>True] ‘

Suppose, however, that you want to plot pairs of values, that is, you have both the x and y coordinates for
the points. Then you first need to to join the two lists into a single table, using the command TableTable
()Table:

’ xvals = {0, 1, 3, 2} ‘

’ yvals = {4, 1, 5, 4} ‘

’ pairs = Table| { xvals[[i]], yvals[[i]] }, {i, 1, 4}]

’ ListPlot [pairs, PlotJoined-—>True | ‘

You may prefer to set up your data in a single command:

[pairs = { {04}, {1,1}, (3,5}, (2,4} } |

You can assign the output of the ListPlot command a name, and then use the command ShowShow ()Show
to redisplay it.

There are many graphics options available, including AspectRatioAspect Ratio ()AspectRatio, AxesLa-
belAxesLabel ()AxesLabel, AxesOriginAxesOrigin () AxesOrigin, GridLinesGridLines ()GridLines, Plot-
LabelPlotLabel ()PlotLabel, PlotRangePlotRange ()PlotRange, and RGBColorRGBColor ()RGBColor.
Table of ContentsTable of Contents ()Table of Contents.

26 Lists of Data

In many cases, you will want to set up or reference data in a list. In Mathematica, the simplest kind of
list corresponds to a “vector”, and is simply a list of number or symbolic values, separated by commas and
enclosed in curly brackets:

’ Clear [chart ,datax ,v] ‘

’ v=1{1, Sin[Pi/5] } ‘

Individual entries of a list may then be accessed by using double square brackets. You can use the command
ListPlotListPlot ()ListPlot to plot such data.

’ datax = { 1, 2, 5, 8, 14, 12, 6, 3 } ‘

’ datax [[3]] ‘

What about a two dimensional array or matrix? Mathematica thinks of such quantities as simply a list of
lists. Thus, a two dimensional array is again a list of quantities separated by commas and enclosed in curly
brackets. What makes it special is that the quantities themselves are lists, namely, the rows of the matrix.
If we call our list chart, here is how we might set it up:

17

chart = { {11, 12, 13, 14},
{21, 22, 23, 24},
{31, 32, 33, 34} }

and we can refer to row 2 of chart as:

\ chart [[2]]

or to the entry in row 2, column 3 as:

‘ chart [[2,3]]

|

However, there is not an easy way to reference a column of data. The best way uses the command TableTable
()Table.

Table of ContentsTable of Contents ()Table of Contents.

27 N (numeric value)

The N command is used to turn a symbolic or exact number or result into a decimal value.

‘ Clear [x]

‘ N[Pi]

‘ Integrate [Sin[x],{x,0,1}]

‘ N[Integrate[Sin[x],{x,0,1}]]

You can request more decimal places of accuracy:

‘ N[Saqrt [2],20]

‘ N[Pi,100]

The output of most Mathematica commands is one or more numbers. You can simply “wrap” the N command
around such a command, to convert the results to a decimal value:

‘ N[Solve[x"3—3%x"2—5%x+15 — 0, x | |

Table of ContentsTable of Contents ()Table of Contents.

28 NDSolve

The NDSolve command is similar to the command DSolveDSolve ()DSolve in that it is used to solve one
or more differential equations with initial conditions. However, it is different in several respects.

NDSolve does not try to compute an exact, symbolic answer. Instead, it uses special methods to approxi-
mate the answer.

Therefore, NDSolve can be applied to all the problems DSolve can handle, but can also solve problems
for which no exact solution can be found.

However, because of the way it handles the problem, NDSolve does not find a formula for the exact answer.
Instead, it computes an “Interpolating Function”. The interpolating function is Mathematica’s estimate
for the behavior of the function. When you call NDSolve, you have to specify a name to be used for the
interpolating function.

The format of the NDSolve command is:

18

name = NDSolve[{ Differential equations, initial conditions},
y[x], {x, xmin, xmax}]

For example, to solve the problem
dy

—~ =(4-2 9
Iy = (4= 22)y 9)
with initial condition: 1
0) == 10
y(0) = 3 (10)
over the interval
0<ax<5h. (11)

we would issue the following Mathematica commands:

Clear [solution , tablel, x, y] ‘

solution =
NDSolve[{ y’ [x]==(4—2+x)xy[x], y[0]==1/6}, y[x], {x, 0, 5}]

In order to actually get numbers out of our answer, we have to use the /. substitution operator. For instance,
if our function y was defined by a formula in the usual way, we would get the value of y at 1.0 by typing
y[1]. Now, our function is not a formula, but an interpolation function whose properties are defined in the
variable called solution. Therefore, we have to use the following command to evaluate y[1.0]:

‘ y[1.0] /. solution ‘

Similarly, wherever we would normally use a formula like y[x], we instead must use the expression y[x] /.
solution. Here, for instance, we make a table of the solution:

tablel =
Table[{x, y[x] /. solution }, {x, 0, 5, 0.5}];

‘ TableForm [tablel, TableHeadings—>{None, {”’x”,”y[x]”} } | ‘

Warning: An interpolating function may only be evaluated over a specific range. For our example, we only
asked for an approximate solution over the range 0 <=z <= 5. Mathematica will refuse to compute a value
of the interpolating function outside this range:

‘ y[6] /. solution ‘

Table of ContentsTable of Contents ()Table of Contents.

29 Nlntegrate

The NIntegrate command approximates the definite integral of a function between two limits. Instead of
trying to find the indefinite integral, and then using the Fundamental Theorem of Calculus, NIntegrate
uses ideas based on Riemann sums to get an approximate value of the integral of many functions for which
the command IntegrateIntegrate ()Integrate cannot get the exact value.

‘ Clear [x] ‘

‘ NIntegrate [Sin[x"3],{x,0,1}] ‘

Warning: NIntegrate requires finite numerical values for the upper and lower limits of the integral. You
definitely can not use NIntegrate for integrals with an upper or lower lower bound of InfinityInfinity
(Special Constants.

Table of ContentsTable of Contents ()Table of Contents.

19

30 NSolve

The NSolve command tries to find all the roots of an algebraic equation, using approximate methods.
The equation to be solved is specified using a double equal sign. The second argument is the name of the
variable to be solved for.

‘ Clear [x] ‘

‘ NSolve[x"2 = 7, x] ‘

Here’s how NSolve fails on a simple equation whose roots are 2 and 4. Notice that NSolve can’t solve
this problem any better than Solve can, because this is not an algebraic equation involving polynomials.
The term 2% is considered “transcendental”. However, NSolve should be able to find the roots of most
polynomial equations, whereas Solve will fail for most polynomials of degree 5 or greater.

NSolve|[x"2 = 2°x, x|

You may also wish to refer to the commands SolveSolve ()Solve or FindRootFindRoot ()FindRoot.
Table of ContentsTable of Contents ()Table of Contents.

31 NSum

NSum numerically estimates the value of an infinite sum.

1
To estimate the sum of the terms on the command would be

‘ Clear [n] ‘

‘ NSum[1/(2°n), {n,1,Infinity}] ‘

Since NSum only uses numerical techniques, it cannot sum symbolic quantities, and the answers it produces

1

may be slightly or greatly inaccurate. For instance, the actual sum of the terms — is infinite, but here is
n

what NSum tells us:

‘ NSum|[1/n, {n,1,Infinity} |

If you are summing symbolic quantities, or need an exact answer, you should refer to the command SumSum
()Sum.
Table of ContentsTable of Contents ()Table of Contents.

32 ParametricPlot

Most plots are of functions that can be expressed in the form y=f(x). But there are some objects we’d like
to draw that don’t fit this pattern. In particular, the points on a circle are exactly the points which satisfy
the relationship 2 + 32 = r2, but this equation can’t be reduced to the form y=f(x) without leaving out

some points. The expression
y=vr2—a? (12)

only produces the top half of the circle, for instance.

In such a case, it is often possible to express both the x and y coordinates of the graph in terms of a helping
variable, called a parameter. For instance, the x and y coordinates of a circle of radius r can be expressed
in terms of a parameter t as:

Clear [r, t, x, y]

20

‘ r=2;

‘ x[t-]:=rxCos[t]

|

‘ y[t-]:=r*Sin[t]

|

For such a situation, Mathematica supplies the ParametricPlot command, which is similar to the command
PlotPlot ()Plot, except that it requires formulas for both x and y as functions of the parameter:

ParametricPlot [{x[t], y[t]}, {t, O, 2«Pi},
AspectRatio—>Automatic]

There are many graphics options available, including AspectRatioAspect Ratio ()AspectRatio, AxesLa-
belAxesLabel ()AxesLabel, AxesOriginAxesOrigin () AxesOrigin, GridLinesGridLines ()GridLines, Plot-
LabelPlotLabel ()PlotLabel, PlotRangePlotRange ()PlotRange, and RGBColorRGBColor ()RGBColor.
The command PolarPlotPolarPlot ()PolarPlot is defined in terms of the ParametricPlot command.
Table of ContentsTable of Contents ()Table of Contents.

33 Plot

The most common Plot command plots one function on a given x domain, letting Mathematica decide how
to choose the y range of the plot.

‘ Clear [f,g,x]

‘ Plot| Sin[x], {x,—Pi,Pi}]

To plot two graphs at the same time, you can simply include both formulas in curly brackets. To make
things clearer, we will give the formulas names first:

‘ f{x-]:=Sqrt[1—x"2]

‘ g[x-]:=x

‘ Plot[{ f[x], g[x] }, {x,0,1}]

You can also use the command ShowShow ()Show to accomplish this task.

Plots can take up a lot of memory. If you can’t save your notebook to a floppy disk because it’s too large,
try deleting some of your pictures. As long as you leave the actual Plot commands in your file, you can
easily get your pictures back the next time you run Mathematica.

You may be interested in the example Plot and D Don’t MixPlot and D Don’t Mix ()Plot and D Don’t
Mix.

There are many graphics options available, including AspectRatioAspect Ratio ()AspectRatio, AxesLa-
belAxesLabel () AxesLabel, AxesOriginAxesOrigin () AxesOrigin, GridLinesGridLines ()GridLines, Plot-
LabelPlotLabel ()PlotLabel, PlotRangePlotRange ()PlotRange, and RGBColorRGBColor ()RGBColor.
Table of ContentsTable of Contents ()Table of Contents.

34 Plot and D Don’t Mix

If you have defined a function f, and you want to plot its first derivative, then the proper way to do this is
to use the “prime” or “single quote” symbol in the command PlotPlot ()Plot:

21

‘ Clear [, x] ‘

‘ f[x-]:=Sin[x] ‘

‘ Plot| f’[x], {x,0,Pi}] ‘

You cannot use D[f[x],x] in the Plot command, even though it means the same thing (to us) as £’[x]! This
is because the Plot command would see the variable x used twice, once as a symbolic argument, and once
as the range of plotting. So the following command won’t work:

‘ Plot[D[f[x],x], {x,0,Pi}] ‘

You may want to refer to the commands D D ()D, or PlotPlot ()Plot.
Table of ContentsTable of Contents ()Table of Contents.

35 PlotLabel

PlotLabel is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot, Para-
metricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.
The PlotLabel option prints a title on your plot. The title should be enclosed in double quotes:

Clear [x]

Plot [Sin[x]|*Sin[2xx], {x,0,10},
PlotLabel—"Product of two Sine functions”]

If you have several plots, each with a plot label, and you show them together with the Show command, only
one label will show up. If the Show command specifies a PlotLabel option, then that is the plot label that
will appear.

Table of ContentsTable of Contents ()Table of Contents.

36 PlotRange

PlotRange is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot,
ParametricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.

You may often find that you want to change the range that Mathematica chooses for the graph. This is
easy to do with the PlotRange option. It can be useful when Mathematica decides to “crop” your graph,
omitting very high or very low values. In that case, you can use the option

PlotRange->All

to force the display of all data. In other cases, you may want to do some “cropping” yourself. You might
want to focus on where a graph crosses the x axis, for instance:

‘ Clear [, x] ‘

‘ flx-]:=(x+1) * (x—2)"2 % x ‘

\ Plot| f£[x], {x,—3,3}, PlotRange—>{—1,1} | \

Table of ContentsTable of Contents ()Table of Contents.

22

37 Polar Grids

When drawing a function using polar coordinates, it may be convenient to show a set of polar grid lines,

that is, a set of regularly spaced circles and rays.
The following Mathematica function circles can be used to draw ncirc circles around the origin, with radius

rmin to rmax:

Clear [circles |

circles [rmin_ ,rmax_, ncirc_]:=
Block [{ circplot },
circplot=Graphics |
Table [
Circle [{0,0},(rmin*(ncirc-—n)+rmax*(n—1)) /(ncirc —1)],
{n,1,ncirc}
]

]
]

To use the function, choose values for the arguments and call circles. There won’t be any output, except
for a note from Mathematica saying “Graphics”. You should save the output of the command as a variable.

rmin=1;

rmax=2;

ncirc=11;

pl=circles [rmin,rmax, ncirc]

The grid can be displayed at any time using the command ShowShow ()Show.

’ Show [pl, AspectRatio—>Automatic] ‘

The function rays can be used to draw nrays rays from the origin, extending from radius rmin to rmax:

’ Clear [rays] ‘

rays [rmin_,rmax_, nrays_]:=
Block [{rayplot },
rayplot=Graphics [
Table [
Line [{{rmin*Cos[n] ,rmin*Sin [n]},
{rmax*Cos [n] ,rmax*Sin [n]}}],
{n,0,2Pi—2+Pi/nrays, 2xPi/nrays}
J
]
]

As before, the output of rays should be saved in a variable:

rmin=0.5;

rmax=2;

nrays=10;

p2=rays [rmin ,rmax,nrays |

Now prepare a graph of your function in polar coordinates, using the command ParametricPlotParametricPlot
()ParametricPlot:

’ flt-]:=2xCos[3xt]

p3=ParametricPlot [{f[t]*Cos[t], f[t]*Sin[t]}, {t,0,2xPi},
AspectRatio—>Automatic, PlotStyle-—>RGBColor[0,0,1]]

23

To show your function along with the circles and rays that form the grid, use the command ShowShow
()Show. Don’t forget the option AspectRatioAspectRatio ()AspectRatio so that your plot doesn’t come

out squashed:

‘ Show [pl,p2,p3, AspectRatio—>Automatic]

|

You may also want to refer to the discussion of the option GridLinesGridLines ()GridLines, used for (x,y)

graphics.
Table of ContentsTable of Contents ()Table of Contents.

38 PolarPlot

The PolarPlot command produces a plot using a formula of the form

r= f(6).

Here, we are using polar coordinates, (r,) to represent points in the plane. The value r represents the radius
or distance of a point from the origin, and 8 or theta represents the angle between the x-axis and the line

from the origin to the point.

PolarPlot is not a built-in Mathematica command, so you have to request that it be read in. One method
of doing this uses the Needs command. Beware! You must type in the double quotes and the backward

quotes exactly as they appear here!

‘ Clear [f,r,t]

|

‘ Needs [” Graphics ¢ Graphics ‘7 |

|

The command << can be used instead of Needs. However, every time it is invoked, the << command reads
in a new copy of the requested command, and does not wipe out the old copies. Using << twice for the same

command can cause memory or logic problems for Mathematica.

‘ (x Don’t enter this command if ”Needs” worked! x)

‘ <<Graphics ‘ Graphics *

Your third option is simply to define the PolarPlot command yourself:

(* Don’t enter this command if you entered ”Needs”)
(* or "<<” | *)

PolarPlot [r-, {t-, tmin_, tmax_}] :=
ParametricPlot [{r*Cos[t], r*Sin[t]}, {t,tmin,tmax},
AspectRatio—>Automatic]

PolarPlot expects a formula for the radius r in terms of the angle 6.

‘ r{theta_] := 2xtheta

|

‘ PolarPlot|[r[theta], {theta,0,20%xPi} |

|

If Mathematica did not draw a plot in response to the above command, then you have not loaded PolarPlot

successfully.

Because of the way PolarPlot is defined in terms of ParametricPlotParametricPlot ()ParametricPlot, you

can’t add any graphics options, such as RGBColorRGBColor ()RGBColor:

PolarPlot | Cos[3xt], {t,0,Pi}, PlotStyle—>RGBColor[1,0,0]}]

24

So if you really want a flexible way of doing polar plots, you will probably want to use the fourth option,
which is not to use the clumsy, inflexible PolarPlot command at all, but instead, use the built-in command
ParametricPlotParametricPlot ()ParametricPlot:

r{theta_]:= Cos[3*theta]

ParametricPlot [{r[t]*Cos[t], r[t]*Sin[t]},
{t,0,Pi}, AspectRatio—>Automatic,
PlotStyle —>{RGBColor[1,0,0]}, Axes—>None]

Table of ContentsTable of Contents ()Table of Contents.

39 Prime

The command Prime[n] produces the n-th prime number. This command will operate fairly quickly for n
as large as 100,000,000.

‘ Clear [n]

Here’s the first prime number:

‘ Prime [1]

and here’s one way to print out the first 10 primes:
Warning: This command won’t work properly in the HTML version.

Do [{
Print ["n=", n, 7 Prime[n]= ”,Prime[n] | },

{n, 1, 10}]

Table of ContentsTable of Contents ()Table of Contents.

40 Print

If you want to see the value of a variable, you can simply type its name. For more complicated output, the
Print command can help you display output lines that include values and text.
Warning: The output of this command in the HTML document will have lost all its spaces.

Print [”The value of Pi to 20 places is ” ,N[Pi,20]]

For another example of the Print command, see the DoDo ()Do command.
Table of ContentsTable of Contents ()Table of Contents.

41 RGBColor

RGBColor is an option that may be specified in the graphics commands ListPlotListPlot ()ListPlot,
ParametricPlotParametricPlot ()ParametricPlot, PlotPlot ()Plot, and ShowShow ()Show.

If you are drawing two curves on the same plot, you may want to draw them in different colors, using the
RGBColor option. The three numbers you specify for each line are the relative amounts of red, green and
blue to be used, between 0 and 1.

‘ Clear [, g, x]

‘ f[x.]:=Sqrt[l—x"2]

25

g[x-]:=x

Plot [{f[x],g[x]}, {x,0,1},
PlotStyle —>{ RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 1.000, 0.000] }]

Table of ContentsTable of Contents ()Table of Contents.

42 Sampling Plot Coordinates

In some cases, you might want Mathematica to report to you the coordinates of specific locations in a plot
that it has displayed. This is easy to do if you follow these steps:

e Move the cursor so that it lies within the plot. The cursor should look like a circle with a plus sign
inside it.

e Now click once. The cursor should change, to look like four arrows.

e Now hold down the command key. On the Macintosh, this is the key with the “apple” and “cloverleaf”,
while on the PC it is the CTRL or Control key. Move the cursor around in the plot. You should
notice that the current coordinates of the cursor show up in the lower left corner of your Mathematica
window.

Now you can copy the coordinates of one or more of the points on the graph into a data array. To do so:
e Move the cursor around the plot, and click on points whose coordinates you want.
e Release the command key.
e Go to the Edit menu and select Copy.
e Move the cursor to a text or graphics cell, and click.
e Go to the Edit menu and select Paste.

You will get pairs of coordinates in a Mathematica array format. You can assign this data to a matrix or
table, and then manipulate it any way you like.
Table of ContentsTable of Contents ()Table of Contents.

43 Sequences

We can think of a sequence as an endless list of numbers, whose values are determined by some rule. Each
number in the sequence is called a term of the sequence. We think of the terms as being numbered, starting
with term 1 or sometimes with term 0.

Clear{f, fib ,n, values}

Some sequences can be defined by writing a formula for the n-th term. In such a case, any particular term
of the sequence can be found simply by evaluating the formula. For instance, if the n-th term is Q"Tjrl, then
we can symbolize the general term with a formula, and find the value of, say, the 10-th term by evaluating
the function there:

‘ f[n_] := (2%n+1) / n

\ £[10]

26

We can use Mathematica commands like Table or even Plot:

‘ values = Table[{n, f[n]}, {n,1,5}]; ‘

‘ TableForm [values | ‘

‘ Plot[{0, f[n]}, {n,1,5}] ‘

It’s usually easy for Mathematica to check the limit of the sequence, or even to differentiate it, when using
L’Hopital’s rule.

‘ Limit[f[n], n>Infinity] ‘

In some cases, however, we don’t know a formula for each term. Instead, we may know a rule for making
the next value of the sequence from the previous values. A sequence defined in this way is called a recursive
sequence. For instance, the Fibonacci sequence is defined as follows: the first two terms are 0 and 1, and
each following term is the sum of the two previous ones, so the sequence begins 0, 1, 1, 2, 3, 5, 8, 11,
How can we get Mathematica to handle this case? We have to use a special form of the function definition,
in which we specify the starting valus, and the rule for getting the next one:

‘ fib [0] = O0; ‘
‘ fib [1] = 1; ‘
\ B T] o= o [m] = 805 [me2] 4 b 1] \

Notice that we counted the first term as number 0, rather than 1. That’s up to us. Notice also the strange
form of the functional definition. The expression fib[n] is not actually necessary; it is there to make the
computations faster. It tells Mathematica that, whenever it computes a specific value of the Fibonacci
sequence, it should “remember” it, so that it can be used in other computations.

The other thing to note about this sort of definition is that we can’t use a Plot command to display the
function, since it will only be defined for integer values. Instead, we must use the command TableTable,
()Table to gather up the values we want, and then display them with the command ListPlotListPlot,
()ListPlot.

‘ values = Table[{n, fib[n]}, {n,0,5} |; ‘

‘ ListPlot [values, PlotJoined—>True] ‘

Another problem with recursive sequences is that we can’t use the Limit command with them. If you
actually entered the following (disabled) Mathematica command, you might wait several minutes, with no
response, before having to go up to the Action menu and selecting Abort Calculation to halt it:

Limit[fib[n], n->Infinity]

One common source of sequences is in the study of Infinite SeriesInfinite Series, ()Infinite Series. We try
to understand such quantities by considering the limit of the sequence of partial sums.
Table of ContentsTable of Contents ()Table of Contents.

44 Series

The Series command produces the beginning terms of a power series for a given function. For instance, let
us suppose we want the series for In(x) around the point x=1, up to the term involving fourth powers:

‘ Clear [approx, f,result ,t,x]

27

‘ f[x-]:= Log[x] ‘

‘ Series[f[x], {x, 1, 4}] ‘

The error term O(x — 1)% is an expression that tells us how our approximate curve will differ from the true
curve as we move away from 1. Now we're just interested in the series function itself, without this error
term. We could simply type it in again, but we don’t have to. The Normal command exists just to chop
off the error term. For future use, we will also name this quantity:

result = Normal[Series|[f[x], {x, 1, 4} |]

Note that we could probably have used the simpler command Normal[%)].

There are many interesting things to do with a series approximation, but we will need to have Mathematica
treat it as a function first. This is surprisingly difficult to do. We’d like to think of it as a function of x, but
unfortunately, the symbol = was used to define the function in the first place. We just have to figure out a
way to make a new version of the function with a different symbolic variable:

‘ approx[t-] := result /. x>t ‘

This command essentially says that once you've gotten the power series for In(x), replace « by ¢ in the
formula. This is only so that we can define the function properly. Once that’s done, we can use any variable
name as an argument of approx. Once we have set up or function, we can plot it or make tables.

‘ data=Table|[{x, f[x], approx[x], f[x]—approx[x]},{x,0.5,5,0.5}]; ‘

‘ TableForm [data] ‘

A plot of In(x) versus the approximation shows good agreement near the point x=1, but the error increases
rapidly after x=2.

Plot[{f[x], approx[x]}, {x, 0, 3},
PlotStyle —>{RGBColor[1,0,0] , RGBColor[0,0,1]}]

Table of ContentsTable of Contents ()Table of Contents.

45 Show

For various reasons, you may want to prepare two plots separately, and then show them together on the
same grid. One reason would be if you are defining a function using two formulas, each one good over a
specific interval. You can graph each piece with the command PlotPlot ()Plot, being sure to “name” each
plot, and then use the Show command to put them together.

‘ Clear [plotl, plot2, x] ‘

‘ plotl = Plot[Sin[x], {x,0,Pi/2}, PlotLabel—>”"The Sine piece”] ‘

‘ plot2 = Plot| 1, {x, Pi/2, 3.0}, PlotLabel—>"The One piece” | ‘

‘ Show[plotl, plot2 | ‘

If the plots are labeled, then the Show command uses the first label it encounters. If this is a problem, just
use the option PlotLabelPlotLabel ()PlotLabel to make a more appropriate label:

‘ Show|[plotl, plot2, PlotLabel-—>”"The composite plot”] ‘

28

There are many graphics options available, including AspectRatioAspectRatio ()AspectRatio, AxesLa-
belAxesLabel ()AxesLabel, AxesOriginAxesOrigin () AxesOrigin, PlotLabelPlotLabel ()PlotLabel, Plo-
tRangePlotRange ()PlotRange, and RGBColorRGBColor ()RGBColor.

Table of ContentsTable of Contents ()Table of Contents.

46 Simple Functions

Many Mathematica commands, such as D (differentiate)D ()D, IntegrateIntegrate ()Integrate, and PlotPlot
()Plot, expect to receive a function to work on. The variable that the function depends on is very important,
and it’s best to define a function of a variable in a way that allows Mathematica to understand what’s going
on:

’ Clear [f, x] ‘

’ flx-] := 10*xx"2+41 ‘

The underline is only used on the left hand side, after the name of the independent variable, and you must
also be sure to use the “colon-equals” sign as part of the function definition. If you want to pass the function
to a Mathematica command, you specify it as f[x].

’ Clear [, x] ‘
’ flx-] := 10%xx"241 ‘
| Dl flx], x] |

And you can easily evaluate the function by replacing its argument by a number.

’ Clear [f, x] ‘
’ flx-] := 10*xx"2+41 ‘
’ £13] ‘

Be careful, though. If you plan to use the expression f[x] in a Mathematica command, then x should not
have been assigned a particular value. You should not issue a command like x=1, for instance, because then
Mathematica will become confused.

’ Clear [, x] ‘
= |
T = o |
[= |
[ntegravel Tl ¥ |

On the one hand, Mathematica thinks x is the number 1, and on the other hand, it will think x is an
argument of a function, and can have any value. If you think you’re having a problem like this, use the
command ClearClear ()Clear to get rid of it!

’ Clear [, x] ‘

29

| x=3

’ Clear [x]

’ flx-] := 10*x"2+1

’ Integrate [f[x], x|

To see how to make a function that carries out several steps, uses iteration, or uses temporary variables,
refer to Advanced FunctionsAdvanced Functions ()Advanced Functions.
Table of ContentsTable of Contents ()Table of Contents.

47 Simplify

Mathematica can simplify many polynomial or trigonometric expressions, but usually you must explicitly
request it to do so, using the Simplify command. For instance, the polynomial fraction

(2% — 22— 3)
(x+1)

can be simplified:

’ Clear [x]

’ (o PP {se=10)

’ Simplify [(x"2—2xx—3)/(x+1)]

Another time when Simplify is useful is when verifying that one function is the inverse of another:

’ Clear [f, g, x]

’ Flx.] = (x+2)/x

| slx] = 2/(x-1)

’ Simplify [g f[x]]]

’ Simplify [f[g[x]]]

You might also be interested in the commands ApartApart ()Apart, ExpandExpand ()Expand, Fac-
torFactor ()Factor, or the TogetherTogether ()Together.
Table of ContentsTable of Contents ()Table of Contents.

48 Solve

The Solve command can be used to seek values of a variable which make an algebraic equation exactly true.
The command will try to find all possible solutions. When you describe the equation to the command, you
must use two equal signs! In some cases, Solve will return an answer in symbolic form, since it is computing
exact values.

30

’ Clear [x, y] ‘

’ Solve[x"2 = 7, x] ‘

In some cases, you may want to use the N command to immediately convert the output of Solve to decimal
values:

’ N[Solve[x"2 = 7, x]] ‘

Solve can handle equations in which extra variables appear, even if those variables have not been assigned
a value.

’ Clear [x, y] ‘

’ Solve [2xxt+y = 1, x] ‘

Solve can solve several equations in several unknowns:

8

Solve| {2 x + 3 y ,
3}, {x, v}]

x + y

Solve can handle some equations that include trigonometric functions:

’ Clear [x] ‘

’ Solve| y — 12 + 0.6%Sin[(t—80)/3], t] ‘

Solve should be able to treat any polynomial equation of order 4 or less. But higher order equations can
make Solve fail. For instance, if Solve fails, and returns a message that begins with the words ToRules,
it’s telling you that it can’t find the exact solution, but does have a numerical estimate, which you can get
by typing N[%]:

’ Clear [x] ‘

’ Solve[x"542xx+1==0, x] ‘

’ N[%] ‘

And here is a transcendental equation that Solve cannot handle. (The problem is the term 2%:

’ Clear [x] ‘

’ Solve| 2"'x=x"2, x] ‘

If Solve can’t handle your equation, you may need to try the command NSolveNSolve ()NSolve, which
uses approximate techniques and seeks all roots, or FindRootFindRoot ()FindRoot, which uses approximate
techniques and seeks just one root.

Table of ContentsTable of Contents ()Table of Contents.

49 Special Constants

There are several special constants that Mathematica names:

’ Clear [x]

31

e Degree, the conversion factor from degrees to radians;

‘ N[Sin[20 Degree]]

e E, the base of the natural logarithm system;

‘ D[E"(x"2), x]

1+V5,

¢ GoldenRatio, the “golden ratio”,

2)
‘ Solve[x / 1 =1/ (x-1), x]
e I, the square root of minus 1;
‘ Solve[x"2 + 2x + 2 = 0, x]

e Infinity, useful in the command LimitLimit ()Limit, and as a limit of on the commands Inte-
grateIntegrate ()Integrate and SumSum ()Sum,;

‘ Integrate| 1/x72, {x,1,Infinity}]

e Pi, the ratio of the circumference of a circle to its diameter.

‘ Sin[Pi/2]

Table of ContentsTable of Contents ()Table of Contents.

50 Special Functions

Mathematica has many mathematical functions, including:
e Abs[x], the absolute value;
e ArcCos[x], the inverse cosine function;
e ArcSin[x], the inverse sine function;
e ArcTan[x], the inverse tangent function;
e Cos[x] and Cosh[x], the cosine and hyperbolic cosine;
e Expl[x], the exponential function, e raised to the power x;
e Factorial[x], or z!, the factorial function, 1-2-3- ... (z — 1) - (z), for a nonnegative integer;

e Gammal]x], the gamma function, defined for all x except nonpositive integers, with Gamma[x]=(x-
1)! if x is a positive integer;

e Log[x], the natural logarithm;
e Log[x,b], the logarithm of x, base b;
e Prime[x], the n-th prime number;

e Sign|[x] returns -1, 0, or +1, when x is negative, zero, or positive;

32

e Sin[x] and Sinh[x], the sine and hyperbolic sine;
e Sqrt[x], the square root;
e Tan[x]| and Tanh[x], the tangent and hyperbolic tangent.

Table of ContentsTable of Contents ()Table of Contents.

51 Sum

The Sum command computes the sum of a set of numbers. One way to specify the set of numbers is as a
formula:

’ Clear [a, b, delx, f, i, n, x] ‘

’ Sum[2%i-1, {i, 1, 10}] ‘

You can also specify an increment, which tells how the index variable is increased from the lower limit to
the upper limit. For instance, you could also add up the odd numbers between 1 and 19 by typing

’ Sum[i, {i, 1, 19, 2}] ‘

The counter variable does not have to be an integer. To do a left hand Riemann sum, for instance, you could
try a formula like this:

’ fx-]:=x+1 ‘

’ a=0; ‘

= |

B |

’ delx=(b—a)/n; ‘

’ N[Sum[f[x]+delx, {x, a, b-delx, delx}]] ‘

The upper limit of the Sum command can be InfinityInfinity ()Special Constants.

’ Sum|[1/2°n, {n,1,Infinity}] ‘

Sometimes, the Sum command may compute a useful answer for an infinite sum, but does not report it to
you. When this happens, you may be able to retrieve a numerical result by using the command NN ()N:

’ N[Sum[1/2"n, {n,l1,Infinity}]] ‘

If the Sum command does not perform satisfactorily, and you can accept a numerical approximation, you
may be interested in the command NSumNSum ()NSum.
Table of ContentsTable of Contents ()Table of Contents.

33

52 SurfaceOfRevolution

Warning: The “Needs” and "<<” commands won’t work properly in the HTML version, and so the Sur-
faceOfRevolution command can’t be loaded.

The SurfaceOfRevolution command produces a plot of the 3D surface of revolution generated by revolving
a given curve z=f(x) about the vertical or z axis.

SurfaceOfRevolution is not a built-in command, so you have to tell Mathematica to read it in. The safest
method uses the Needs command. Beware! You must type in the double quotes and backward quotes
exactly as they appear here!

‘ Clear [t ,x] ‘

‘ Needs [” Graphics ¢ SurfaceOfRevolution ¢”] ‘

The command << can be used instead of Needs. However, every time it is invoked, the << command
reads in a new copy of the requested command, and does not wipe out old copies. Using << twice for the
same command can cause memory or logic problems for Mathematica.

‘ <<Graphics ¢ SurfaceOfRevolution * ‘

The simplest version of the SurfaceOfRevolution command assumes that we have a function z=f(x) which
we wish to rotate about the z axis. If this is all we want, we have only to specify the domain of the function
in order to get our plot.

‘ SurfaceOfRevolution| Sin[x], {x, 0, Pi}] ‘

If Mathematica did not draw a plot in response to your command, then you probably have not loaded the
SurfaceOfRevolution command properly.

Although we ususally want to rotate the curve through a full revolution, you can control this by specifying
a third argument, of the form { theta, theta_min, theta_max }:

‘ SurfaceOfRevolution| Sin[x], {x, 0, Pi}, {t, 0, 2 Pi/3}]

But suppose you want to rotate the sine function about the x axis, getting a cigar shape? This can be
accomplished by specifying the value of the option RevolutionAxis. By default, this option has the value
{0,0,1}, specifying revolution about the z axis. You never want to rotate about the y axis in this setup. To
rotate about the x axis, specify an axis of { 1,0,0 }.

‘ SurfaceOfRevolution| Sin[x], {x, 0, Pi}, RotationAxis—>{1,0,0}]

Warnings:

e Plots can take up a lot of memory. If you can’t save your notebook to a floppy disk because it’s too
large, try deleting some of your pictures. As long as you leave the actual Plot commands in your file,
you can easily get your pictures back the next time you run Mathematica.

e The online documentation for SurfaceOfRevolution is just horrible, and there isn’t any documenta-
tion at all for this command in Wolfram’s big black book.

Table of ContentsTable of Contents ()Table of Contents.

53 Table

The Table command allows you to set up and store a table of data. Usually, you want to use a semicolon at
the end of the Table command to suppress its output. The command TableFormTableForm ()TableForm
prints out the table in a neat format, with optional row and column labels:

34

’ Clear [col2, fibonacci, i, rowl, row2, row5, squares] ‘

’ squares = Table[{i, 172}, {i,1,10}] ‘

TableForm [squares
TableHeadings—>{None, {”Number”, ”Square”} } |

A table is not just something to be printed out. It is also an array of data, usually two dimensional. Any
single entry of the table can be accessed by specifying its row and column numbers, within double square
brackets:

’ squares [[7 ,2]] ‘

Similarly, any row of the table can be accessed by specifying just the row number. The result will be a list:

’ rowb = squares [[5]] ‘

Getting a column of the table into a list is a little trickier. We’ll actually use the Table command to do it!

’ col2 = Table[squares[[i,2]], {i,1,9}] ‘

Also, you can build a table, one row at a time, from a collection of lists:

’ rowl = {1, 2, 3, 4, 5, 6} ‘

’ row2 = {1, 1, 2, 3, 5, 8} ‘

’ fibonacci = {rowl, row2} ‘

TableForm [fibonacci
TableHeadings —>{{’N”, ”Fibonacci Number” }, None}]

Table of ContentsTable of Contents ()Table of Contents.

54 TableForm

The TableForm command prints a table in a neat format, by rows and columns. The table will usually
have been set up by the command TableTable ()Table.

In the simplest use, we immediately follow a Table command by a TableForm command, whose argument
is simply %:

’ Clear [i, matrix] ‘

’ Table[{i, i°2, i3}, {i,1,10}] ‘

’ TableForm [%] ‘

If the data to be printed has been named, then that name should be specified in the TableForm command:

’ matrix = { {11, 12, 13}, {21, 22, 23}, {31, 32, 33} } ‘

’ TableForm [matrix] ‘

The rows and columns may be labeled by specifying the TableHeadings option. The form of the option is:

35

TableHeadings—>{
{"row 1 label",
{"column 1 label", "column 2 label", ...,

"row 2 label", ..., "last row label"},
"last column label"} }

If there are to be no row labels, then the entire list of row labels is replaced by the word None; the same

holds if there will be no column labels:

TableForm [matrix, TableHeadings—>{
{"Row 1”7, ”Second Row”, ”Last One”},
{”Column 1”7, ?Column 2”, ”Column 37} }]

TableForm | matrix, TableHeadings—>{
None, {”Column 1”, ”Column 2”, ”Column 3”7} }]

TableForm [matrix, TableHeadings—>{
{”Row 1”, ”Second Row”, ”Last One”}, None } |

Warning: If your column labels are too long to fit on one line, then TableForm will produce ugly output,
by just continuing the labels (and the data beneath them) onto the next line.
Table of ContentsTable of Contents ()Table of Contents.

55 Together

The Together command can be used to take several polynomials and polynomial fractions and join them
into a single polynomial fraction with a common denominator. This is similar to the operation of converting

2/3+1/4+ 3 into 47/12.

‘ Clear [stuff , x]

‘ stuff = x"2 + 1 + (x—3) / (x"2 —3xx + 4)

‘ Together [stuff]

The command ApartApart ()Apart can undo the Together command.

36

