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Predators and their prey

Growth Famine Death

Differential equations can simulate population changes.

� Exponential ODE: Pure growth or decay;
� Logistic ODE: Growth with a “ceiling”;
� Predator-Prey ODE: Two species compete.

1 The exponential growth equation

Many animal populations have a natural growth rate. As long as there is plenty of food and no external
pressures, the population will increase by the same relative amount at fixed time intervals. We might observe
that every 10 days, a population of rats increases by 8 percent. A corresponding differential equation for the
population p(t) would describe the instantaneous growth by

dp

dt
= r p(t)
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where r is the growth parameter. We may assume that at some time t0, we measured the population
p0 = p(t0).

Our prediction problem then is to determine the population p(t) at any future time, given our information
at time t0 and our model for how the population grows with the rate r.

2 A computed exponential growth solution

We can use a simple forward Euler ODE solver to fill in the predictions of this growth model for a population.
At time t0, 0, let’s start with p0 = 100 Tribbles and assume the growth rate is r = 0.05. We write

r = 0 .05
for i = 0 : 100

i f ( i == 0 )
t = 0 .0
p = 100 .0

else
dt = 0.01
dp = r * p * dt
t = t + dt
p = p + dp

end
tvec ( i +1) = t
pvec ( i +1) = p

end
plot ( tvec , pvec )

For this example, our plot doesn’t look very exciting! Growth is happening, but not very noticeably. As-
suming our approach is correct, what can we do to see a sharp increase in population?

3 An exact exponential growth solution

It turns out that, for the growth differential equation, we can actually work out an exact solution. The result
is probably no surprise, but the technique, called separation of variables, is a useful tool which we will need
for another problem soon:

dy

dt
= r y Differential equation

dy

y
= r dt Separation of variables y and t∫

dy

y
=

∫
r dt Indefinite integrals

ln(y) = r t+ c1 Antiderivatives, c1 arbitrary constant

y = c2e
r t Exponentiate, c2 = ec1

y = y0 e
r (t−t0) Apply our initial condition

So our formula for the future population involves the exponential function:

p(t) = p0 e
r(t−t0)
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4 An exponential growth example

This result suggests that the growth equation cannot be a general model of population; assuming r is positive,
a population will grow infinitely large, which is not believable. However, in many cases, the growth equation
does seem to match the behavior of a population that is (temporarily) experiencing unrestrained growth.

Here is some population data for Mexico:

Year Population

---- ----------

1865 8259080

1910 15160369

1921 14334780

1930 16552722

1940 19653552

1950 25791017

1960 34923129

1970 48225238

1980 66846833

1990 81249645

2000 97483412

2010 113580528

2018 123982528

A plot of the data suggests that, for some value of r, an exponential growth curve would be a reasonable
match for the statistics until about 1980, when perhaps a linear growth rate takes over.

Population statistics for Mexico

Assignment: Plot the Mexico population data. Write a function which, given values of t0, p0, t and r,
will return a prediction for Mexico’s population p(t) at any time t. Use the initial values t0 = 1865 and
p0 = 8259080. Try to estimate a value for r so tha4 a plot of your function roughly matches the data. You
can estimate r by thinking as follows:

p(1940) = p(1865) ∗ er∗(1940−1865)

If you can solve this equation, you will get a rough idea of what r might be, and then you can try to improve
your plot by making small adjustments to that value.
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5 Logistic growth

The explosive growth we saw in the exponential example can occur in real populations for a limited time
only; the model solution goes to infinity, but we know that can’t happen. At some point, the growth potential
must be resisted by some limits, such as a shortage of food or space or some other resource. This means
that the population lives in an environment with a limited carrying capacity; that is, there is maximum
population that can survive long term.

6 Logistic growth example

As an example, here is a table of the Paramecium population in a test tube at a biology lab. The data and
plot strongly suggest that a period of exponential growth is followed by a tendency to stick near a fixed
population of about 300 individuals.

Paramecium

Hours Population

------ ----------

1, 3

2, 5

3, 9

4, 15

5, 23

6, 28

7, 39

8, 47

9, 61

10, 83

11, 102

12, 153

13, 198

14, 205

15, 248

16, 277

17, 305

18, 301

19, 280

20, 298

21, 287

22, 302

23, 285

24, 293

25, 288

26, 290
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Paramecium population data

7 Logistic growth equation

To construct a better mathematical model for cases where we know a limit exists, we must somehow control
the growth value r, so that it begins to tap the brakes as the limit is approached. We can see one way to do
this by looking at the logistic differential equation. If we know that our system can sustain a maximum
population of ymax, then we want to adjust the growth equation so that, at low populations, the growth
rate is r, but as we approach the maximum population, the effective growth rate decreases to zero. We can
achieve this by including a factor of the form (1− y

ymax
), which adjusts r in this way.

Our logistic differential equation is then:

dy

dt
= y r (1− y

ymax
)

To complete the problem, we need to specify values for the growth rate r, the maximum population ymax,
and the initial conditions

t0 =?

y(t0) =?
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8 Logistic growth exact solution

The general logistic equation can be solved exactly. In some of the following steps, we will silently rearrange
and redefine constants to simplify the final result.

dy

dt
= r y (1− y

ymax
) Differential equation

ymax dy

y(ymax − y)
= r dt Separation of variables∫

ymax dy

y(ymax − y)
=

∫
r dt Indefinite integrals

1

ymax

∫
(
1

y
+

1

(ymax − y)
)dy =

∫
r dt Partial fractions

1

ymax
(ln(y)− ln(ymax − y)) = r t+ c1 Antiderivatives, c1 is an arbitrary constant

y

ymax − y
= c2e

(rt+ymax) = c3 e
rt Exponentiate, c3 combines c2 and eymax

y(t) =
ymax

1 + ce−rt
Algebra, solving for y for any initial condition

From the resulting formula, we can see that, assuming 0 ≤ r, we have y(t) → ymax, t → ∞, as we should
expect. The initial condition information will tell us how to set the constant c.

9 Logisic model fitting

To compare the logistic equation with our paramecium data, we can make reasonable guesses for t0 = 1 and
y0 = 3 and ymax = 300. We can adjust the formula so that the exponential involves (t− t0). Now plugging
our initial data allows us to determine the constant c:

y(t0) =
ymax

1 + ce−r(t−t0)

3 =
300

1 + c

c = 99

but now we need an estimate of r. We want to use data from the part of the graph where the population is
still rising strongly. We might consider y(12) = 153. Plugging this into our equation allows us to estimate r:

153 =
300

1 + 99e−r(11)

1 + 99e−r(11) =
300

153

e−r(11) = (
300

153
− 1)/99

−11r = ln((
300

153
− 1)/99)

r = −0.4214

And now that we have all the constants in our formula, we can evaluate it and compare it to our original
data:
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Paramecium population data and logistic formula

We can conclude that the logistic model is a good fit to our data, especially during the growth phase. It
tapers off smoothly at the end, although our data actually seems to wiggle above and below the maximum
value of 300 that we estimated.

10 Logistic approximate solution by Euler

We were lucky that in this case, it was possible to use the method of separation of variables to get a general
solution to our differential equation. But usually, we are simply given a differential equation with initial
conditions, and asked to estimate the solution for future times, without being able to determine a formula
for the solution. Instead, we must be satisfied with a computational result, that is, a table of estimated
values (ti), yi) produced by an ODE solver.

Knowing only the differential equation, and the initial value, we can use the Euler method to draw a partial,
approximate picture of the solution over time.

r = 0.4214 <== Set two cons tant s we need
pmax = 300.0

for i = 0 : 100
i f ( i == 0 )

t = 1 .0 <== Set the i n i t i a l c ond i t i on
p = 3 .0

else
dt = 0.26 <== Set dt so we get to t = 27
dp = r * p * ( 1 . 0 = p / pmax ) * dt <== Right hand s i d e o f the ODE
t = t + dt
p = p + dp

end
tvec ( i +1) = t
pvec ( i +1) = p

end
plot ( tvec , pvec )

The Euler method starts knowing only the initial condition, and the direction field. It uses this information
to estimate the solution at a sequence of time values. Typically, the error between this estimate and the
true solution will grow as time increases, particularly if the solution grows large, or varies strongly. For this
paramecium problem, our results look reasonably close:
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Paramecium population data and Euler prediction

11 Predator Prey equation

The logistic equation can simulate a population whose exponential growth is eventually inhibited by a
maximum population limit. This represents a fairly simple barrier. In nature, a more interesting example of
a population limit occurs when a prey population shares space with a predator. The prey population tends to
increase with reproduction, but decrease through predation (being eaten!). Instead of a model which simply
rises towards a ceiling, we now might observe two competing populations that rise and fall repeatedly.

Let p1(t) and p2(t) represent the sizes of the prey and predator populations at time t. We can assume that,
if left alone, the prey population will grow at some rate α; on the other hand, if left alone, the predators will
die off, at a rate of −γ. The difference is that the prey only need grass to eat, and there is always enough
(no logistic worry today!). But the predators will starve on their own, and can only survive by predation,
that is, meeting and eating a prey.

Predation occurs when a prey and a predator meet; one dies, and the other gets fed. We need to add a term
to both population equations that models the frequency and cost or benefit of predation.

If we assume the predators and prey encounter each other at random, then the frequency of predation must
be proportional to p1(t) ∗ p2(t); that is, if we double the number of rabbits, or double the number of foxes,
the number of encounters will double.

The cost of predation to the prey, which we can describe as β, is a negative effect because each death reduces
the prey population; the product of the cost and the frequency gives us a term to be subtracted from the
prey population equation. Similarly, the benefit of predation, labeled δ, will be a positive effect multiplying
the predation frequency, and added to the predator equation.

Thus we use four positive parameters, α, β, γ, and δ, to describe the pair of differential equations that control
the two populations:

dp1
dt

= α ∗ p1 − β ∗ p1 ∗ p2
dp2
dt

= −γ ∗ p2 + δ ∗ p1 ∗ p2

Although these equations look quite new, we can rearrange them so that they look as versions of the
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exponential growth equation in which the r coefficient has become more complicated, (no longer constant):

dp1
dt

= (α− β ∗ p2) ∗ p1 r1 = (α− β ∗ p2)

dp2
dt

= (−γ + δ ∗ p1) ∗ p2 r2 = (−γ + δ ∗ p1)

so if p2 decreases, the prey population grows faster; if p1 decreases, the predator population dies away faster.

Considering this new version of the equations, we can see that there must be a steady state solution, where
r1 = r2 = 0, and the two populations never change in size. Two other possible trends are obvious: if p1 ever
becomes 0, then the predators must exponentially die off; if p2 ever becomes 0, the prey goes into exponential
growth and explodes to infinity.

12 Predator Prey approximate solution by Euler

As it turns out, there is not a general solution to predator prey equations, and so our best hope is to get a
reasonable approximation. We will again choose the simple approach of an Euler solver. Our Euler method
now has to update two quantities, p1 and p2, at every time step. It’s pretty easy to see the changes that are
necessary in order to get this to work.

alpha = 2 .0
beta = 0.001
gamma = 10.0
de l t a = 0.002

t s top = 5 .0
nstep = 100

for i = 0 : n
i f ( i == 0 )

t = 0 .0
p1 = 5000
p2 = 100

else
dt = ts top / nstep
dp1 = ( alpha = beta * p2 ) * p1 * dt
dp2 = ( = gamma + de l t a * p1 ) * p2 * dt
t = t + dt
p1 = p1 + dp1
p2 = p2 + dp2

end
tvec ( i +1) = t
p1vec ( i +1) = p1
p2vec ( i +1) = p2

end
plot ( tvec , pvec )

For our first guess, we used 100 Euler steps over the interval from 0 to 5 years. However, our estimate blows
up, with the predator population heading to infinity, and the prey going negative. When we use 200 and
then 400 steps to analyze the same time interval, a more reasonable picture appears, with both populations
going through cycles that bounce a little higher each time.
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Predator Prey simulations: 100, 200 and 400 Euler steps

In fact, it turns out that the populations actually will follow a fixed cycle, but we’ll only be able to see this
convincingly if we increase the number of Euler steps. Try 800 steps, and if necessary 1600, to see that the
pictures suggest this behavior.

To see the cyclic behavior in aother way, we can make what is called a phase plot of the data. Instead of
plotting (t, p1(t)) and )(t, p2(t)), we will plot (p1(t), p2()). The fact that these two quantities change together
is documented by their tracing out what looks almost like a closed curve.

Population and Phase plots: 1600 Euler steps

After using a greater number of steps, we can see that the population plot is beginning to look periodic
and the phase plot, although clearly making three loops, might actually form a closed curve if we tried for
greater accuracy in our calculations. It turns out that there is not a simple exact formula for the solution
to this predator prey problem, but it is known that, for a wide range (but not all)) of the parameters α, β,
γ and δ, the exact mathematical solution is periodic, as our esimated solutions suggest.

13 The effect of growth rates

All our examples of population change can be regarded as modeling p(t) using a differential equation with a
growth rate g:
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dp

dt
= r p(t) g = r

dp

dt
= r (1− p(t)

pmax
) p(t) g(t) = r (1− p(t)

pmax
)

dp1
dt

= (α− β p2(t)) p1(t) g1(p2(t)) = (α− β p2(t))

dp2
dt

= (−γ + δ p1(t)) p2(t) g2(p1(t)) = (−γ + δ p1(t))

This suggests that we could make new population models by simply trying out different formulas for growth
rates r(). Examples include:

r = t physically unlikely

r = sin(t) modeling daily or yearly cycles

r = 1/p(t) small populations surge

r = f(t)− p(t) try to match some target data

A variation on the predator-prey equation would replace the exponential growth term in the prey equation
by a logistic term. This would impose the condition that tere is a limited amount of grass available. This
would avoid allowing the prey population to explode if all the predators die.

If a population p(t) achieves and holds a constant value, we say it is steady. If the population is defined by
a growth ODE of the form

p′(t) = r(t, p(t)) ∗ p(t)
then steady solutions can only occur if p(t) = 0 or the growth rate r() is 0. Mathematically, a steady
solution has stopped changing. But in physical systems, there can be small variations or perturbations in
the quantities we measure. So for a physical system, such as a population, we would like to make a stronger
statement than saying that the population has stopped changing. Instead, we would like to say that, as long
as there are small enough, even small changes or measurement inaccuracies in the population will not cause
a noticeable increase or decrease. In that case, we say the population value is stable.

In the following plots of growth rates, we ask whether there are stable solutions.

1. If r(t) = t, then the zero population is steady, but all positive populations are unstable; they all grow
to infinity at an increasing rate. (All negative populations, if that is meaningful, decrease to negative
infinity)

2. If r(t) = max(1− t, 0), then all positive populations grow, but at a slower and slower rate, until time
all growth stops. So all populations become stable after that point.

3. If r(p(t)) = c, for some positive constant, then positive populations grow, negative populations decrease,
and zero is steady, but unstable.

4. If r(p(t)) = −p2 +4p− 3 = −(1− p)(3− p), the steady populations are 0, 1 and 3. Can you see why 0
and 3 are stable, but 1 is unstable?

5. If r(p(t)) = −p3 +6p2 − 11p+6 = (1− p)(2− p)(3− p), the steady populations are 0, 1, 2, and 3. The
stable solutions are 1 and 3.

6. If r(p(t)) = p3 − 6p2 +11p− 6 = −(1− p)(2− p)(3− p), the steady populations are 0, 1, 2, and 3. The
stable solutions are 0 and 2.

From these simple examples, you might conclude that stable and unstable steady solutions will always
alternate. Can you come up with a simple formula for r(p(t)) which has just two steady solutions, both
stable? Or three?
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Six growth-rate graphs
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