09 May 2025 9:47:12.703 PM TOMS358_TEST: FORTRAN90 version Test TOMS358 library. CSVD_TEST Call ACM TOMS Algorithm 358 for the singular value decomposition: A = U S V* of an M by N complex matrix. Matrix row order M = 5 Matrix column order N = 2 Number of RHSs = 0 Matrix A: 0.2576 0.8252 -0.1807 -0.7902 -0.6562 0.7141 0.0599 -0.2496 -0.2178 -0.0148 -0.1810 -0.5733 0.0897 -0.3515 -0.1330 -0.1866 0.3059 0.7396 -0.3115 0.2056 Singular values: 1.71883 0.910794 U: 0.0735 0.6345 -0.3481 0.3448 -0.4900 -0.1256 -0.1646 -0.2117 0.0258 -0.1535 -0.3855 0.4198 0.1614 -0.1746 0.0650 0.4398 0.1873 0.2738 -0.3715 -0.4159 -0.1443 0.1496 -0.0062 0.5825 0.7055 -0.0367 -0.1729 0.0310 0.2446 -0.1667 0.0534 -0.1210 -0.0196 0.3991 -0.1438 0.0161 0.8803 0.0395 0.1473 -0.0613 0.2574 0.3746 0.2090 -0.4010 0.0694 0.1472 0.1027 0.0146 0.7410 -0.0507 V: 0.8887 0.0000 -0.4585 0.0000 -0.4014 -0.2217 -0.7779 -0.4296 Matrix U S V* (should equal the original A): 0.2576 0.8252 -0.1807 -0.7902 -0.6562 0.7141 0.0599 -0.2496 -0.2178 -0.0148 -0.1810 -0.5733 0.0897 -0.3515 -0.1330 -0.1866 0.3059 0.7396 -0.3115 0.2056 Max Deviations: A,U^2,V^2,B: 3.85592780E-16 4.44102719E-16 2.77555756E-17 0.00000000E+00 CSVD_TEST Call ACM TOMS Algorithm 358 for the singular value decomposition: A = U S V* of an M by N complex matrix. Matrix row order M = 6 Matrix column order N = 4 Number of RHSs = 0 Matrix A: 0.9112 0.0484 -0.1616 -0.0216 -0.7407 -0.5010 0.4615 -0.8107 0.5783 0.3501 0.5144 -0.3554 -0.4509 -0.4100 0.5963 -0.0436 -0.8570 0.0929 0.0527 -0.8917 0.8462 0.0506 0.1651 -0.5925 0.3944 0.8405 -0.5481 0.7912 -0.2271 0.7277 0.9508 0.1261 -0.1191 -0.9636 0.7916 0.5179 -0.2565 0.3473 -0.2345 0.5694 -0.7252 -0.6553 -0.1210 0.5754 0.5819 -0.3119 0.1518 -0.3141 Singular values: 2.61077 1.92546 1.66346 1.00232 U: 0.4665 0.1468 -0.3266 0.1814 -0.2123 0.0712 -0.3848 -0.3054 0.1120 -0.1847 -0.0692 0.5275 0.1773 0.1831 -0.2920 -0.1770 -0.4805 0.1242 0.0320 -0.1384 -0.0165 0.2194 0.5557 -0.4414 -0.4664 0.0519 -0.4641 0.1963 0.2182 0.1179 -0.0652 0.1439 0.3758 0.4467 0.1874 0.2521 0.3291 0.2350 0.0344 -0.5842 0.5146 0.0426 -0.3354 0.2324 0.2114 0.0352 0.1055 -0.0618 -0.0229 -0.4837 0.2773 -0.2475 -0.3052 -0.0814 -0.0226 -0.1267 0.7117 -0.0077 0.0295 0.0601 -0.2102 -0.1825 -0.0516 0.0818 0.2838 -0.4417 -0.4654 -0.5602 -0.1082 -0.0093 0.1392 -0.2755 V: 0.7935 0.0000 -0.2035 0.0000 -0.0981 0.0000 0.5650 0.0000 -0.1785 -0.3397 -0.2982 -0.3435 -0.7051 -0.2218 0.0208 0.3148 -0.4203 -0.0574 -0.3496 -0.0218 0.4478 -0.4504 0.5422 -0.0054 0.0706 0.1953 -0.4869 -0.6260 0.1324 0.1522 -0.2515 -0.4733 Matrix U S V* (should equal the original A): 0.9112 0.0484 -0.1616 -0.0216 -0.7407 -0.5010 0.4615 -0.8107 0.5783 0.3501 0.5144 -0.3554 -0.4509 -0.4100 0.5963 -0.0436 -0.8570 0.0929 0.0527 -0.8917 0.8462 0.0506 0.1651 -0.5925 0.3944 0.8405 -0.5481 0.7912 -0.2271 0.7277 0.9508 0.1261 -0.1191 -0.9636 0.7916 0.5179 -0.2565 0.3473 -0.2345 0.5694 -0.7252 -0.6553 -0.1210 0.5754 0.5819 -0.3119 0.1518 -0.3141 Max Deviations: A,U^2,V^2,B: 1.09364100E-15 6.66162618E-16 8.88180479E-16 0.00000000E+00 CSVD_TEST Call ACM TOMS Algorithm 358 for the singular value decomposition: A = U S V* of an M by N complex matrix. Matrix row order M = 5 Matrix column order N = 5 Number of RHSs = 0 Matrix A: -0.2678 0.1124 -0.2903 0.5676 0.5188 0.6742 -0.6774 -0.6562 0.5273 0.0576 -0.5541 -0.4479 -0.5206 0.1611 0.4166 -0.0522 0.5121 0.7248 -0.1796 -0.6033 -0.3846 0.8972 0.0837 0.6973 0.0941 -0.6342 -0.1639 0.5358 -0.4581 0.5250 -0.1354 0.3565 0.9029 0.3663 0.6409 0.5378 -0.2166 -0.1587 0.2706 -0.1886 -0.4252 -0.6964 0.9777 0.1108 -0.3228 0.0573 -0.1250 -0.9520 0.4045 0.0061 Singular values: 2.28418 1.98074 1.40762 0.885745 0.320641 U: -0.3271 -0.3537 0.3961 -0.1470 0.3697 0.2091 -0.3305 0.0056 0.4391 -0.3269 -0.0874 0.3281 0.3141 0.3431 0.0349 -0.5241 0.3689 -0.2248 0.4346 -0.1301 0.1088 0.4267 0.2619 -0.5207 -0.0761 0.2814 0.2181 0.3249 0.3480 0.3273 -0.2805 -0.1896 0.0280 -0.4814 0.1440 -0.2500 0.1095 -0.5853 -0.1288 0.4455 -0.0337 -0.5856 -0.0562 -0.1722 -0.4624 -0.4021 0.1820 0.4041 0.2253 0.0221 V: 0.2989 0.0000 -0.5300 0.0000 0.5610 0.0000 -0.4395 0.0000 -0.3490 0.0000 -0.0531 -0.2389 -0.4407 -0.6284 -0.2554 -0.3887 0.2515 -0.0845 -0.1035 0.2314 -0.4494 0.2183 0.1724 -0.1675 0.1940 -0.3271 -0.5283 -0.2875 0.3304 0.2776 0.6611 0.0726 0.0793 0.1663 -0.0975 -0.3630 0.0522 -0.5718 0.2234 -0.0539 -0.1130 -0.3821 -0.1927 -0.0332 0.4235 -0.0605 0.2056 0.0522 0.6177 -0.4398 Matrix U S V* (should equal the original A): -0.2678 0.1124 -0.2903 0.5676 0.5188 0.6742 -0.6774 -0.6562 0.5273 0.0576 -0.5541 -0.4479 -0.5206 0.1611 0.4166 -0.0522 0.5121 0.7248 -0.1796 -0.6033 -0.3846 0.8972 0.0837 0.6973 0.0941 -0.6342 -0.1639 0.5358 -0.4581 0.5250 -0.1354 0.3565 0.9029 0.3663 0.6409 0.5378 -0.2166 -0.1587 0.2706 -0.1886 -0.4252 -0.6964 0.9777 0.1108 -0.3228 0.0573 -0.1250 -0.9520 0.4045 0.0061 Max Deviations: A,U^2,V^2,B: 1.07783159E-15 1.22124539E-15 4.51892471E-16 0.00000000E+00 CSVD_TEST Call ACM TOMS Algorithm 358 for the singular value decomposition: A = U S V* of an M by N complex matrix. Matrix row order M = 5 Matrix column order N = 5 Number of RHSs = 2 Matrix A: -0.4551 -0.7780 0.2193 0.0198 0.9185 -0.1010 0.2190 -0.0357 0.2229 0.5806 -0.0070 -0.2984 -0.5143 -0.5921 0.4700 0.2757 0.8117 0.5621 0.0460 -0.7047 -0.3009 0.0123 0.2835 -0.3431 -0.0980 0.5818 0.8181 0.1444 -0.5336 0.0133 -0.1605 0.1451 -0.7390 -0.4550 -0.1665 0.3134 -0.4916 -0.2010 -0.1264 0.5031 -0.3372 -0.5276 0.1493 0.5425 0.1309 0.9787 0.2051 0.1494 -0.3422 0.8453 Singular values: 2.15083 1.76348 1.32607 0.880726 0.153682 U: -0.5399 -0.2779 -0.0304 0.1336 -0.0189 0.1618 0.0204 0.6581 -0.2967 -0.2537 0.0450 -0.1612 0.5717 0.5204 -0.5031 -0.1304 0.0817 0.0747 0.1531 0.2620 0.0521 -0.3574 0.3795 0.1537 0.3910 -0.1805 0.1946 -0.4002 -0.3469 -0.4451 0.0328 -0.0457 -0.0761 -0.3637 -0.2725 -0.6472 0.4098 0.2024 0.2387 -0.3157 -0.1110 -0.6763 -0.2586 -0.1053 0.1357 0.0800 0.3624 -0.1259 0.1649 0.5032 V: 0.4054 0.0000 -0.1472 0.0000 -0.2510 0.0000 -0.7946 0.0000 -0.3458 0.0000 -0.1400 -0.0076 -0.2412 0.3591 0.8048 0.1362 -0.3240 -0.0810 0.0990 -0.0745 -0.6510 -0.1747 0.1048 0.1670 -0.3852 0.0642 -0.3647 0.0135 0.3100 -0.3535 -0.1405 -0.2926 0.6348 0.2159 0.0800 0.2014 0.0047 -0.3328 -0.5037 0.1836 -0.3531 0.3628 -0.3651 0.4117 -0.2432 -0.1098 0.0547 -0.1001 -0.2077 0.5599 Matrix U S V* (should equal the original A): -0.4551 -0.7780 0.2193 0.0198 0.9185 -0.1010 0.2190 -0.0357 0.2229 0.5806 -0.0070 -0.2984 -0.5143 -0.5921 0.4700 0.2757 0.8117 0.5621 0.0460 -0.7047 -0.3009 0.0123 0.2835 -0.3431 -0.0980 0.5818 0.8181 0.1444 -0.5336 0.0133 -0.1605 0.1451 -0.7390 -0.4550 -0.1665 0.3134 -0.4916 -0.2010 -0.1264 0.5031 -0.3372 -0.5276 0.1493 0.5425 0.1309 0.9787 0.2051 0.1494 -0.3422 0.8453 Max Deviations: A,U^2,V^2,B: 1.29473141E-15 9.88274872E-16 6.66142481E-16 7.27789088E-15 TOMS358_TEST: Normal end of execution. 09 May 2025 9:47:12.704 PM