subroutine p00_ab ( problem, m, a, b ) !*****************************************************************************80 ! !! p00_ab() returns bounds for a problem specified by index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROBLEM, the problem index. ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) integer problem if ( problem == 1 ) then call p01_ab ( m, a, b ) else if ( problem == 2 ) then call p02_ab ( m, a, b ) else if ( problem == 3 ) then call p03_ab ( m, a, b ) else if ( problem == 4 ) then call p04_ab ( m, a, b ) else if ( problem == 5 ) then call p05_ab ( m, a, b ) else if ( problem == 6 ) then call p06_ab ( m, a, b ) else if ( problem == 7 ) then call p07_ab ( m, a, b ) else if ( problem == 8 ) then call p08_ab ( m, a, b ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'P00_AB(): Fatal error!' write ( *, '(a)' ) ' Problem index out of bounds.' stop end if return end subroutine p00_f ( problem, m, n, x, f ) !*****************************************************************************80 ! !! p00_f() returns the objective function value for a problem specified by index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROBLEM, the problem index. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer problem real ( kind = rk ) x(m,n) if ( problem == 1 ) then call p01_f ( m, n, x, f ) else if ( problem == 2 ) then call p02_f ( m, n, x, f ) else if ( problem == 3 ) then call p03_f ( m, n, x, f ) else if ( problem == 4 ) then call p04_f ( m, n, x, f ) else if ( problem == 5 ) then call p05_f ( m, n, x, f ) else if ( problem == 6 ) then call p06_f ( m, n, x, f ) else if ( problem == 7 ) then call p07_f ( m, n, x, f ) else if ( problem == 8 ) then call p08_f ( m, n, x, f ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'P00_F(): Fatal error!' write ( *, '(a)' ) ' Problem index out of bounds.' stop end if return end subroutine p00_m ( problem, m ) !*****************************************************************************80 ! !! p00_m() returns the spatial dimension for a problem specified by index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROBLEM, the problem index. ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer problem if ( problem == 1 ) then call p01_m ( m ) else if ( problem == 2 ) then call p02_m ( m ) else if ( problem == 3 ) then call p03_m ( m ) else if ( problem == 4 ) then call p04_m ( m ) else if ( problem == 5 ) then call p05_m ( m ) else if ( problem == 6 ) then call p06_m ( m ) else if ( problem == 7 ) then call p07_m ( m ) else if ( problem == 8 ) then call p08_m ( m ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'P00_M(): Fatal error!' write ( *, '(a)' ) ' Problem index out of bounds.' stop end if return end subroutine p00_problem_num ( problem_num ) !*****************************************************************************80 ! !! p00_problem_num() returns the number of problems. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer PROBLEM_NUM, the number of defined problems. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer problem_num problem_num = 8 return end subroutine p00_sol ( problem, m, know, x ) !*****************************************************************************80 ! !! p00_sol() returns known solutions for a problem specified by index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 October 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROBLEM, the problem index. ! ! Input, integer M, the order of the problem. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know integer problem real ( kind = rk ) x(m) if ( problem == 1 ) then call p01_sol ( m, know, x ) else if ( problem == 2 ) then call p02_sol ( m, know, x ) else if ( problem == 3 ) then call p03_sol ( m, know, x ) else if ( problem == 4 ) then call p04_sol ( m, know, x ) else if ( problem == 5 ) then call p05_sol ( m, know, x ) else if ( problem == 6 ) then call p06_sol ( m, know, x ) else if ( problem == 7 ) then call p07_sol ( m, know, x ) else if ( problem == 8 ) then call p08_sol ( m, know, x ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'P00_SOL(): Fatal error!' write ( *, '(a)' ) ' Problem index out of bounds.' stop end if return end subroutine p00_title ( problem, title ) !*****************************************************************************80 ! !! p00_title() returns a title for a problem specified by index. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROBLEM, the problem index. ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer problem character ( len = * ) title if ( problem == 1 ) then call p01_title ( title ) else if ( problem == 2 ) then call p02_title ( title ) else if ( problem == 3 ) then call p03_title ( title ) else if ( problem == 4 ) then call p04_title ( title ) else if ( problem == 5 ) then call p05_title ( title ) else if ( problem == 6 ) then call p06_title ( title ) else if ( problem == 7 ) then call p07_title ( title ) else if ( problem == 8 ) then call p08_title ( title ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'P00_TITLE(): Fatal error!' write ( *, '(a)' ) ' Problem number out of bounds.' stop end if return end subroutine p01_ab ( m, a, b ) !*****************************************************************************80 ! !! p01_ab() returns bounds for problem 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2010 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p01_f ( m, n, x, f ) !*****************************************************************************80 ! !! p01_f() returns the objective function value for problem 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer j real ( kind = rk ) p real ( kind = rk ) s real ( kind = rk ) x(m,n) do j = 1, n p = product ( x(1:m,j) ) s = sum ( x(1:m,j) ) f(j) = - exp ( p ) * sin ( s ) end do return end subroutine p01_m ( m ) !*****************************************************************************80 ! !! p01_m() returns the spatial dimension for problem 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2010 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p01_sol ( m, know, x ) !*****************************************************************************80 ! !! p01_sol() returns known solutions for problem 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2010 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = (/ & 0.409887209247642D+00, & 0.409887209247642D+00, & 0.409887209247642D+00, & 0.409887209247642D+00 /) else know = 0 end if return end subroutine p01_title ( title ) !*****************************************************************************80 ! !! p01_title() returns a title for problem 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2010 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = - exp(prod(x)) * sin(sum(x)).' return end subroutine p02_ab ( m, a, b ) !*****************************************************************************80 ! !! p02_ab() returns bounds for problem 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p02_f ( m, n, x, f ) !*****************************************************************************80 ! !! p02_f() returns the objective function value for problem 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer j real ( kind = rk ) p real ( kind = rk ) s real ( kind = rk ) x(m,n) do j = 1, n p = x(1,j) * x(2,j)**2 * x(3,j)**3 * x(4,j)**4 s = sum ( x(1:m,j) ) f(j) = - exp ( p ) * sin ( s ) end do return end subroutine p02_m ( m ) !*****************************************************************************80 ! !! p02_m() returns the spatial dimension for problem 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p02_sol ( m, know, x ) !*****************************************************************************80 ! !! p02_sol() returns known solutions for problem 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = (/ & 0.390500591228663D+00, & 0.392051909813608D+00, & 0.393601661544812D+00, & 0.395149843840982D+00 /) else know = 0 end if return end subroutine p02_title ( title ) !*****************************************************************************80 ! !! p02_title() returns a title for problem 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = - exp(x(1)*x(2)^2*x(3)^3*x(4)^4) * sin(sum(x)).' return end subroutine p03_ab ( m, a, b ) !*****************************************************************************80 ! !! p03_ab() returns bounds for problem 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p03_f ( m, n, x, f ) !*****************************************************************************80 ! !! p03_f() returns the objective function value for problem 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer j real ( kind = rk ) s real ( kind = rk ) x(m,n) do j = 1, n s = - x(1,j) - 2.0D+00 * x(2,j) - 3.0D+00 * x(3,j) - 4.0D+00 * x(4,j) f(j) = - 10000.0D+00 * product ( x(1:m,j) ) * exp ( s ) end do return end subroutine p03_m ( m ) !*****************************************************************************80 ! !! p03_m() returns the spatial dimension for problem 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p03_sol ( m, know, x ) !*****************************************************************************80 ! !! p03_sol() returns known solutions for problem 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = (/ & 0.999980569087140D+00, & 0.500000721280566D+00, & 0.333341891834645D+00, & 0.249997266604697D+00 /) else know = 0 end if return end subroutine p03_title ( title ) !*****************************************************************************80 ! !! p03_title() returns a title for problem 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = -1000 * product(x) * exp(-x(1)-2x(2)-3x(3)-4x(4)).' return end subroutine p04_ab ( m, a, b ) !*****************************************************************************80 ! !! p04_ab() returns bounds for problem 4. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p04_f ( m, n, x, f ) !*****************************************************************************80 ! !! p04_f() returns the objective function value for problem 4. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer j real ( kind = rk ) x(m,n) do j = 1, n f(j) = - 100.0D+00 * product ( x(1:m,j) ) * exp ( - x(4,j) ) & / ( 1.0D+00 + x(1,j) * x(2,j) * x(3,j) )**2 end do return end subroutine p04_m ( m ) !*****************************************************************************80 ! !! p04_m() returns the spatial dimension for problem 4. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p04_sol ( m, know, x ) !*****************************************************************************80 ! !! p04_sol() returns known solutions for problem 4. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = 1.0D+00 else know = 0 end if return end subroutine p04_title ( title ) !*****************************************************************************80 ! !! p04_title() returns a title for problem 4. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = -100 * product(x) * exp(-x(4)) / (1+x(1)+x(2)+x(3)).' return end subroutine p05_ab ( m, a, b ) !*****************************************************************************80 ! !! p05_ab() returns bounds for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p05_f ( m, n, x, f ) !*****************************************************************************80 ! !! p05_f() returns the objective function value for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) f(n) integer j real ( kind = rk ) x(m,n) do j = 1, n f(j) = ( x(1,j) - 3.0D+00 / 11.0D+00 )**2 & + ( x(2,j) - 6.0D+00 / 13.0D+00 )**2 & + ( x(3,j) - 12.0D+00 / 23.0D+00 )**4 & + ( x(4,j) - 8.0D+00 / 37.0D+00 )**6 end do return end subroutine p05_m ( m ) !*****************************************************************************80 ! !! p05_m() returns the spatial dimension for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p05_sol ( m, know, x ) !*****************************************************************************80 ! !! p05_sol() returns known solutions for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = (/ & 3.0D+00 / 11.0D+00, & 6.0D+00 / 13.0D+00, & 12.0D+00 / 23.0D+00, & 8.0D+00 / 37.0D+00 /) else know = 0 end if return end subroutine p05_title ( title ) !*****************************************************************************80 ! !! p05_title() returns a title for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = (x(1)-3/11)^2+(x(2)-6/13)^2+(x(3)-12/23)^4+(x(4)-8/37)^6' return end subroutine p06_ab ( m, a, b ) !*****************************************************************************80 ! !! p06_ab() returns bounds for problem 6. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 1.0D+00 return end subroutine p06_f ( m, n, x, f ) !*****************************************************************************80 ! !! p06_f() returns the objective function value for problem 6. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) arg real ( kind = rk ) f(n) integer j real ( kind = rk ) x(m,n) do j = 1, n arg = & 1.0D+00 / x(1,j) & + 1.0D+00 / x(2,j) & + 1.0D+00 / x(3,j) & + 1.0D+00 / x(4,j) f(j) = - sin ( arg ) end do return end subroutine p06_m ( m ) !*****************************************************************************80 ! !! p06_m() returns the spatial dimension for problem 6. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 4 return end subroutine p06_sol ( m, know, x ) !*****************************************************************************80 ! !! p06_sol() returns known solutions for problem 6. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) if ( know == 0 ) then know = 1 x(1:m) = (/ & 0.509282516910744D+00, & 0.509282516910744D+00, & 0.509282516910746D+00, & 0.509282516910744D+00 /) else know = 0 end if return end subroutine p06_title ( title ) !*****************************************************************************80 ! !! p06_title() returns a title for problem 6. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Harald Niederreiter, Kevin McCurley, ! Optimization of functions by quasi-random search methods, ! Computing, ! Volume 22, Number 2, 1979, pages 119-123. ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = - sin(1/x(1)+1/x(2)+1/x(3)+1/x(4))' return end subroutine p07_ab ( m, a, b ) !*****************************************************************************80 ! !! p07_ab() returns bounds for problem 7. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 10.0D+00 return end subroutine p07_f ( m, n, x, f ) !*****************************************************************************80 ! !! p07_f() returns the objective function value for problem 5. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Langerman10 reference? ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ), dimension ( 2, 5 ) :: a = reshape ( (/ & 3.0D+00, 5.0D+00, & 5.0D+00, 2.0D+00, & 2.0D+00, 1.0D+00, & 1.0D+00, 4.0D+00, & 7.0D+00, 9.0D+00 /), & (/ 2, 5 /) ) real ( kind = rk ) arg real ( kind = rk ) :: c(5) = (/ & 1.0D+00, 2.0D+00, 5.0D+00, 2.0D+00, 3.0D+00 /) real ( kind = rk ) f(n) integer j integer k real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 real ( kind = rk ) x(m,n) f(1:n) = 0.0D+00 do j = 1, n do k = 1, 5 arg = dot_product ( x(1:m,j) - a(1:m,k), x(1:m,j) - a(1:m,k) ) f(j) = f(j) - c(k) * exp ( - arg / pi ) * cos ( pi * arg ) end do end do return end subroutine p07_m ( m ) !*****************************************************************************80 ! !! p07_m() returns the spatial dimension for problem 7. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 2 return end subroutine p07_sol ( m, know, x ) !*****************************************************************************80 ! !! p07_sol() returns known solutions for problem 7. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) know = 0 call r8_fake_use ( x(1) ) return end subroutine p07_title ( title ) !*****************************************************************************80 ! !! p07_title() returns a title for problem 7. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = Langerman2 function' return end subroutine p08_ab ( m, a, b ) !*****************************************************************************80 ! !! p08_ab() returns bounds for problem 8. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Output, real ( kind = rk ) A(M), B(M), lower and upper bounds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) a(m) real ( kind = rk ) b(m) a(1:m) = 0.0D+00 b(1:m) = 10.0D+00 return end subroutine p08_f ( m, n, x, f ) !*****************************************************************************80 ! !! p08_f() returns the objective function value for problem 8. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Langerman10 reference? ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of arguments. ! ! Input, real ( kind = rk ) X(M,N), the arguments. ! ! Output, real ( kind = rk ) F(N), the function values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ), dimension ( 10, 30 ) :: a = reshape ( (/ & 9.681, 0.667, 4.783, 9.095, 3.517, 9.325, 6.544, 0.211, 5.122, 2.020, & 9.400, 2.041, 3.788, 7.931, 2.882, 2.672, 3.568, 1.284, 7.033, 7.374, & 8.025, 9.152, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.734, 4.982, & 2.196, 0.415, 5.649, 6.979, 9.510, 9.166, 6.304, 6.054, 9.377, 1.426, & 8.074, 8.777, 3.467, 1.863, 6.708, 6.349, 4.534, 0.276, 7.633, 1.567, & 7.650, 5.658, 0.720, 2.764, 3.278, 5.283, 7.474, 6.274, 1.409, 8.208, & 1.256, 3.605, 8.623, 6.905, 4.584, 8.133, 6.071, 6.888, 4.187, 5.448, & 8.314, 2.261, 4.224, 1.781, 4.124, 0.932, 8.129, 8.658, 1.208, 5.762, & 0.226, 8.858, 1.420, 0.945, 1.622, 4.698, 6.228, 9.096, 0.972, 7.637, & 7.305, 2.228, 1.242, 5.928, 9.133, 1.826, 4.060, 5.204, 8.713, 8.247, & 0.652, 7.027, 0.508, 4.876, 8.807, 4.632, 5.808, 6.937, 3.291, 7.016, & 2.699, 3.516, 5.874, 4.119, 4.461, 7.496, 8.817, 0.690, 6.593, 9.789, & 8.327, 3.897, 2.017, 9.570, 9.825, 1.150, 1.395, 3.885, 6.354, 0.109, & 2.132, 7.006, 7.136, 2.641, 1.882, 5.943, 7.273, 7.691, 2.880, 0.564, & 4.707, 5.579, 4.080, 0.581, 9.698, 8.542, 8.077, 8.515, 9.231, 4.670, & 8.304, 7.559, 8.567, 0.322, 7.128, 8.392, 1.472, 8.524, 2.277, 7.826, & 8.632, 4.409, 4.832, 5.768, 7.050, 6.715, 1.711, 4.323, 4.405, 4.591, & 4.887, 9.112, 0.170, 8.967, 9.693, 9.867, 7.508, 7.770, 8.382, 6.740, & 2.440, 6.686, 4.299, 1.007, 7.008, 1.427, 9.398, 8.480, 9.950, 1.675, & 6.306, 8.583, 6.084, 1.138, 4.350, 3.134, 7.853, 6.061, 7.457, 2.258, & 0.652, 2.343, 1.370, 0.821, 1.310, 1.063, 0.689, 8.819, 8.833, 9.070, & 5.558, 1.272, 5.756, 9.857, 2.279, 2.764, 1.284, 1.677, 1.244, 1.234, & 3.352, 7.549, 9.817, 9.437, 8.687, 4.167, 2.570, 6.540, 0.228, 0.027, & 8.798, 0.880, 2.370, 0.168, 1.701, 3.680, 1.231, 2.390, 2.499, 0.064, & 1.460, 8.057, 1.336, 7.217, 7.914, 3.615, 9.981, 9.198, 5.292, 1.224, & 0.432, 8.645, 8.774, 0.249, 8.081, 7.461, 4.416, 0.652, 4.002, 4.644, & 0.679, 2.800, 5.523, 3.049, 2.968, 7.225, 6.730, 4.199, 9.614, 9.229, & 4.263, 1.074, 7.286, 5.599, 8.291, 5.200, 9.214, 8.272, 4.398, 4.506, & 9.496, 4.830, 3.150, 8.270, 5.079, 1.231, 5.731, 9.494, 1.883, 9.732, & 4.138, 2.562, 2.532, 9.661, 5.611, 5.500, 6.886, 2.341, 9.699, 6.500 /), & (/ 10, 30 /) ) real ( kind = rk ) arg real ( kind = rk ) :: c(30) = (/ & 0.806, 0.517, 1.500, 0.908, 0.965, & 0.669, 0.524, 0.902, 0.531, 0.876, & 0.462, 0.491, 0.463, 0.714, 0.352, & 0.869, 0.813, 0.811, 0.828, 0.964, & 0.789, 0.360, 0.369, 0.992, 0.332, & 0.817, 0.632, 0.883, 0.608, 0.326 /) real ( kind = rk ) f(n) integer j integer k real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 real ( kind = rk ) x(m,n) f(1:n) = 0.0D+00 do j = 1, n do k = 1, 30 arg = dot_product ( x(1:m,j) - a(1:m,k), x(1:m,j) - a(1:m,k) ) f(j) = f(j) - c(k) * exp ( - arg / pi ) * cos ( pi * arg ) end do end do return end subroutine p08_m ( m ) !*****************************************************************************80 ! !! p08_m() returns the spatial dimension for problem 8. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer M, the spatial dimension. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m m = 10 return end subroutine p08_sol ( m, know, x ) !*****************************************************************************80 ! !! p08_sol() returns known solutions for problem 8. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input/output, integer KNOW. ! On input, KNOW is 0, or the index of the previously returned solution. ! On output, KNOW is 0 if there are no more solutions, or it is the ! index of the next solution. ! ! Output, real ( kind = rk ) X(M), the solution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer know real ( kind = rk ) x(m) know = 0 call r8_fake_use ( x(1) ) return end subroutine p08_title ( title ) !*****************************************************************************80 ! !! p08_title() returns a title for problem 8. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 January 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, character ( len = * ) TITLE, a title for the problem. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) title title = 'f(x) = Langerman10 function' return end subroutine r8_fake_use ( x ) !*****************************************************************************80 ! !! r8_fake_use() pretends to use an R8 variable. ! ! Discussion: ! ! Some compilers will issue a warning if a variable is unused. ! Sometimes there's a good reason to include a variable in a program, ! but not to use it. Calling this function with that variable as ! the argument will shut the compiler up. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk8 ) X, the variable to be "used". ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) x if ( x /= x ) then write ( *, '(a)' ) ' r8_fake_use(): variable is NAN.' end if return end subroutine r8col_uniform ( m, n, a, b, seed, r ) !*****************************************************************************80 ! !! r8col_uniform() fills an R8COL with scaled pseudorandom numbers. ! ! Discussion: ! ! An R8COL is an array of R8 values, regarded as a set of column vectors. ! ! The user specifies a minimum and maximum value for each row. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 2011 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns in ! the array. ! ! Input, real ( kind = rk ) A(M), B(M), the lower and upper limits. ! ! Input/output, integer SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R(M,N), the array of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m) real ( kind = rk ) b(m) integer i integer, parameter :: i4_huge = 2147483647 integer j integer k integer seed real ( kind = rk ) r(m,n) do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r(i,j) = a(i) & + ( b(i) - a(i) ) * real ( seed, kind = rk ) * 4.656612875D-10 end do end do return end