function harmonic_number ( n ) !*****************************************************************************80 ! !! harmonic_number() computes the Nth harmonic number. ! ! Discussion: ! ! H(N) = Sum ( 1 <= I <= N ) 1 / I ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 May 2022 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N: the index of the harmonic number. ! ! Output: ! ! real VALUE: the value of the harmonic number. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) harmonic_number integer i integer n real ( kind = rk8 ) value value = 0.0D+00 do i = 1, n value = value + 1.0D+00 / i end do harmonic_number = value return end function steinerberger_function ( n, x ) !*****************************************************************************80 ! !! steinerberger_function() evaluates the Steinerberger function. ! ! Discussion: ! ! f(n,x) = sum ( 1 <= k <= n ) abs ( sin ( pi * k * x ) ) / k ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2025 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! John D Cook, ! Pushing numerical integration software to its limits, ! https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ ! Posted 12 June 2023. ! ! John D Cook, ! Plotting a function with lots of local minima, ! https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ ! Posted 12 June 2023. ! ! Stefan Steinerberger, ! A amusing sequence of functions, ! Mathematics Magazine, ! Volume 91, Number 4, October 2018, pages 262-266. ! ! Input: ! ! integer N: the index of the function. ! ! real X: the evaluation point. ! ! Output: ! ! real VALUE: the function value. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer k integer n real ( kind = rk8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk8 ) steinerberger_function real ( kind = rk8 ) value real ( kind = rk8 ) x value = 0.0D+00 do k = 1, n value = value + abs ( sin ( k * r8_pi * x ) ) / k end do steinerberger_function = value return end function steinerberger_integral01 ( n ) !*****************************************************************************80 ! !! steinerberger_integral01() returns the Steinerberger integral from 0 to 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2025 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! John D Cook, ! Pushing numerical integration software to its limits, ! https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ ! Posted 12 June 2023. ! ! John D Cook, ! Plotting a function with lots of local minima, ! https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ ! Posted 12 June 2023. ! ! Stefan Steinerberger, ! A amusing sequence of functions, ! Mathematics Magazine, ! Volume 91, Number 4, October 2018, pages 262-266. ! ! Input: ! ! integer N: the index of the function. ! ! Output: ! ! real VALUE: the value of the integral from 0 to 1. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) harmonic_number integer n real ( kind = rk8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk8 ) steinerberger_integral01 steinerberger_integral01 = 2.0D+00 * harmonic_number ( n ) / r8_pi return end