program main !*****************************************************************************80 ! !! square_monte_carlo_test() tests square_monte_carlo(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 January 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'square_monte_carlo_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test square_monte_carlo().' call test01 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SQUARE_MONTE_CARLO_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine test01 ( ) !*****************************************************************************80 ! !! TEST01 estimates integrals over the unit square in 2D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 January 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 2 integer e(m) integer :: e_test(m,7) = reshape ( (/ & 0, 0, & 2, 0, & 0, 2, & 4, 0, & 2, 2, & 0, 4, & 6, 0 /), (/ m, 7 /) ) integer j integer n real ( kind = rk ) result(7) real ( kind = rk ) square01_area real ( kind = rk ), allocatable :: value(:) real ( kind = rk ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' Use SQUARE01_SAMPLE to estimate integrals ' write ( *, '(a)' ) ' over the interior of the unit square in 2D.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' N' // & ' 1' // & ' X^2 ' // & ' Y^2' // & ' X^4' // & ' X^2Y^2' // & ' Y^4' // & ' X^6' write ( *, '(a)' ) ' ' n = 1 do while ( n <= 65536 ) allocate ( value(1:n) ) allocate ( x(1:m,1:n) ) call square01_sample ( n, x ) do j = 1, 7 e(1:m) = e_test(1:m,j) call monomial_value ( m, n, e, x, value ) result(j) = square01_area ( ) * sum ( value(1:n) ) & / real ( n, kind = rk ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) deallocate ( value ) deallocate ( x ) n = 2 * n end do write ( *, '(a)' ) ' ' do j = 1, 7 e(1:m) = e_test(1:m,j) call square01_monomial_integral ( e, result(j) ) end do write ( *, '(2x,a8,7(2x,g14.6))' ) ' Exact', result(1:7) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end