program main !*****************************************************************************80 ! !! SPHERE_CVT runs the spherical centroidal Voronoi tessellation code. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2010 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Qiang Du, Vance Faber, Max Gunzburger, ! Centroidal Voronoi Tesselations: Applications and Algorithms, ! SIAM Review, Volume 41, 1999, pages 637-676. ! ! Douglas Hardin, Edward Saff, ! Discretizing Manifolds via Minimum Energy Points, ! Notices of the American Mathematical Society, ! ! Edward Saff, Arno Kuijlaars, ! Distributing Many Points on a Sphere, ! The Mathematical Intelligencer, ! Volume 19, Number 1, 1997, pages 5-11. ! ! Local Parameters: ! ! Local, integer N, the number of Voronoi cells to generate. ! A typical value is 256. ! ! Local, integer IT_MAX, the maximum number of correction ! iterations used in the Voronoi calculation. A typical value is 10. ! ! Local, integer SAMPLE_NUM, the total number of sampling points ! tested. A typical value is 5000 * N. ! ! Local, integer SAMPLE_BATCH, the maximum number of sample points to ! generate at one time. For problems where N is large, and so SAMPLE_NUM ! is large, setting SAMPLE_BATCH to 1,000,000 or less avoids ! memory problems. ! ! Local, integer RANDOM_GENERATOR, indicates how the initial ! Voronoi cell generators are chosen. ! 0, random points. ! 1, spiral points. ! 2, soccer centers (N must be 32). ! 3, soccer vertices (N must be 60). ! 4, Halton points ! ! Local, integer SAMPLE_TYPE, how sampling is done. ! 1, random points. ! 2, Halton points. ! ! Local, integer DISECTION_TYPE, if the soccerball centers are used, ! and if 0 < DISECTION_NUM, then this variable specifies how the disection ! is to be done. ! 0, add a point on the bisector between contiguous centers, adding ! one center for every edge of the original grid; ! 1, add every Voronoi vertex of the original grid. ! ! Local, integer DISECTION_NUM, the number of disections to ! apply if the soccer ball centers are used as initial generators. ! ! Local, real ( kind = rk ) GENERATOR_INIT(DIM_NUM,N), the initial Voronoi cell ! generators. ! ! Local, real ( kind = rk ) GENERATOR(DIM_NUM,N), the Voronoi cell generators ! of the Voronoi tessellation, as approximated by the SPHERE_CVT algorithm. ! This is the output quantity of most interest. ! ! Local, integer SEED, determines how to initialize the ! RANDOM_NUMBER routine. If SEED is zero on input, then RANDOM_INITIALIZE ! will make up a seed from the current double precision time clock reading. ! If SEED is nonzero, then a reproducible sequence of random numbers ! defined by SEED will be chosen. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), allocatable, dimension ( :, : ) :: a real ( kind = rk ), allocatable, dimension ( :, : ) :: b real ( kind = rk ), allocatable, dimension ( :, : ) :: c real ( kind = rk ), allocatable, dimension ( :, : ) :: centroid logical debug integer disection_num integer, parameter :: disection_type = 0 real ( kind = rk ), allocatable, dimension ( :, : ) :: generator real ( kind = rk ), allocatable, dimension ( :, : ) :: generator_init character ( len = 255 ) :: file_name = 'generators.xyz' integer, parameter :: file_unit = 1 integer i integer it integer, parameter :: it_max = 2000 integer :: n = 32 integer n1 integer n2 integer n3 integer next integer, parameter :: random_generator = 0 integer, parameter :: sample_batch = 1000000 integer sample_num integer, parameter :: sample_type = 1 integer seed debug = .false. disection_num = 0 seed = 123456789 ! ! Print introduction and options. ! call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPHERE_CVT' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' A sample problem for the probabilistic' write ( *, '(a)' ) ' Spherical Centroidal Voronoi Tessellation algorithm.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Given a unit sphere in 3D, the problem is to determine' write ( *, '(a)' ) ' a set of GENERATORS, that is, a set of points which ' write ( *, '(a)' ) ' lie on the sphere, and which implicitly define a' write ( *, '(a)' ) ' division of the surface into Voronoi cells.' write ( *, '(a)' ) ' It is also desired that each generator point actually' write ( *, '(a)' ) ' be the centroid of its cell.' ! ! Initialize the random number generator. ! call random_initialize ( seed ) ! ! Initialize the Voronoi cell generators. ! allocate ( generator_init(1:3,1:n) ) call generator_initialize ( random_generator, n, seed, generator_init ) ! ! Carry out disection if requested. ! ! I would REALLY like to do the disection in a subroutine. ! But I don't know allocatable arrays well enough to be sure I can do this! ! if ( random_generator == 2 ) then if ( 0 < disection_num ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Disection option = ', disection_type write ( *, '(a,i8)' ) ' Number of disections = ', disection_num write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Initial N = ', n write ( *, '(a)' ) ' ' n3 = n allocate ( c(1:3,1:n3) ) c(1:3,1:n3) = generator_init(1:3,1:n) deallocate ( generator_init ) do i = 1, disection_num n1 = n3 allocate ( a(1:3,1:n1) ) a(1:3,1:n1) = c(1:3,1:n1) deallocate ( c ) if ( disection_type == 0 ) then n2 = 3 * n1 - 6 allocate ( b(1:3,1:n2) ) call delaunay_midpoints ( n1, a, n2, b ) else if ( disection_type == 1 ) then n2 = 2 * n1 - 4 allocate ( b(1:3,1:n2) ) call voronoi_vertices ( n1, a, n2, b ) end if n3 = n1 + n2 allocate ( c(1:3,1:n3) ) c(1:3,1:n1) = a(1:3,1:n1) c(1:3,n1+1:n1+n2) = b(1:3,1:n2) deallocate ( a ) deallocate ( b ) write ( *, '(a,i8,a,i8)' ) ' Disection ', i, ' results in N = ', n3 end do n = n3 allocate ( generator_init(1:3,1:n) ) generator_init(1:3,1:n) = c(1:3,1:n3) deallocate ( c ) end if end if ! ! Now we are sure we know what N is, so we can allocate other things. ! allocate ( centroid(1:3,1:n) ) allocate ( generator(1:3,1:n) ) sample_num = 1000 * n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPHERE_CVT Algorithm parameters:' write ( *, '(a)' ) '-------------------------' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of Voronoi cells to generate: ', n write ( *, '(a,i8)' ) ' Number of iterations to determine CVT: ', it_max write ( *, '(a,i12)' ) ' Number of sampling points: ', sample_num write ( *, '(a,i12)' ) ' Sampling is done in batches of size ', sample_batch if ( sample_type == 1 ) then write ( *, '(a)' ) ' Sample is done by RANDOM points.' else if ( sample_type == 2 ) then write ( *, '(a)' ) ' Sample is done by HALTON points.' end if ! ! Write initial generators to a file. ! call r8mat_write ( 'initial.xyz', 3, n, generator ) generator(1:3,1:n) = generator_init(1:3,1:n) ! ! Carry out the SPHERE_CVT iteration, which drives the Voronoi generators ! and Voronoi centroids closer and closer. ! next = 1 do it = 1, it_max call sphere_cvt_centroid ( n, generator, sample_num, sample_batch, & sample_type, seed, centroid ) if ( it == next ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) 'STEP = ', it write ( *, '(a)' ) ' Discrepancy between generator and centroid' call motion ( n, generator, centroid ) if ( debug ) then next = next + 1 else if ( it < 5 ) then next = next + 1 else if ( it_max < 11 ) then next = next + 1 else next = ( ( ( 10 * it ) / it_max ) + 1 ) * ( it_max / 10 ) end if next = min ( next, it_max ) end if generator(1:3,1:n) = centroid(1:3,1:n) end do ! ! Write generators to files. ! call r8mat_write ( file_name, 3, n, generator ) ! ! Determine motion of generators from initial to final. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Total motion of generators from initial to final:' write ( *, '(a)' ) ' ' call motion ( n, generator, generator_init ) ! ! Free memory. ! deallocate ( centroid ) deallocate ( generator ) deallocate ( generator_init ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPHERE_CVT_MAIN' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine delaunay_midpoints ( nc, centers, nm, midpoints ) !*****************************************************************************80 ! !! DELAUNAY_MIDPOINTS returns the midpoints of a Delaunay triangulation. ! ! Discussion: ! ! A set of NC points on the unit sphere is given. ! ! The appropriate STRIPACK routines are called to generate the ! Voronoi diagram of the points. ! ! For each pair of centers that are joined by a line of a Delaunay ! trianglation, we want to compute the midpoint. ! ! If we start with NC center points, then the Delaunay triangulation ! will have: ! ! * NC vertices ! * the number of edges will be E = ( 3 * F ) / 2 because each ! triangle adds 3 sides, but each side is added twice. ! * Euler's formula will read F - ( 3 * F ) / 2 + NC = 2 ! ! Therefore, the number of triangles will be: ! ! F = 2 * ( NC - 2 ) ! ! and the number of edges will be ! ! E = 3 * ( NC - 2 ) ! ! hence the number of midpoints will be ! ! NM = E = 3 * ( NC - 2 ). ! ! If we add the NM midpoints to our NC = NC(0) center points to create a ! refined mesh of NC(1) points, then: ! ! NC(1) = NC(0) + 3 * ( NC(0) - 2 ) = 4 * ( NC(0) - 2 ) + 2 ! ! which can be rewritten as: ! ! NC(1) - 2 = 4 * ( NC(0) - 2 ) ! ! and if this process is repeated K times, ! ! NC(K) - 2 = 4**K * ( NC(0) - 2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer NC, the number of "center" points. ! ! Input, real ( kind = rk ) CENTERS(3,NC), the coordinates of the center ! points. ! ! Output, integer NM, the number of midpoints. ! ! Output, real ( kind = rk ) MIDPOINTS(3,NM), the coordinates ! of the midpoints. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nc real ( kind = rk ) centers(3,nc) real ( kind = rk ) ds(nc) integer i integer i4_wrap integer ierror integer ip1 integer iwk(2*nc) integer j integer lend(nc) integer list(6*nc) integer lnew integer lptr(6*nc) integer ltri(6,2*nc-4) integer n1 integer n2 integer nm integer nt real ( kind = rk ) midpoints(3,3*nc-6) real ( kind = rk ) x(nc) real ( kind = rk ) y(nc) real ( kind = rk ) z(nc) ! ! Copy the points out. ! x(1:nc) = centers(1,1:nc) y(1:nc) = centers(2,1:nc) z(1:nc) = centers(3,1:nc) ! ! Create the triangulation. ! call trmesh ( nc, x, y, z, list, lptr, lend, lnew, iwk, iwk(nc+1), ds, & ierror ) if ( ierror == -2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DELAUNAY_MIDPOINTS - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' The first 3 nodes are collinear.' stop end if if ( 0 < ierror ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DELAUNAY_MIDPOINTS - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' Duplicate nodes encountered.' stop end if ! ! Create a triangle list. ! call trlist ( nc, list, lptr, lend, 6, nt, ltri, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DELAUNAY_MIDPOINTS - Fatal error!' write ( *, '(a)' ) ' Error in TRLIST.' stop end if ! ! We expect that every pair of nodes (N1,N2) connected by a Delaunay ! side will be listed also as (N2,N1). To avoid repetition, we select ! the listing in which N1 < N2. ! nm = 0 do j = 1, nt do i = 1, 3 n1 = ltri(i,j) ip1 = i4_wrap ( i+1, 1, 3 ) n2 = ltri(ip1,j) if ( n1 < n2 ) then nm = nm + 1 midpoints(1:3,nm) = 0.5D+00 * ( centers(1:3,n1) + centers(1:3,n2) ) end if end do end do ! ! Normalize the points. ! do j = 1, nm midpoints(1:3,j) = midpoints(1:3,j) / sqrt ( sum ( midpoints(1:3,j)**2 ) ) end do return end subroutine find_closest ( dim_num, n, sample_num, s, r, nearest ) !*****************************************************************************80 ! !! FIND_CLOSEST finds the nearest R point to each S point. ! ! Discussion: ! ! This routine finds the closest Voronoi cell generator by checking every ! one. For problems with many cells, this process can take the bulk ! of the CPU time. Other approaches, which group the cell generators into ! bins, can run faster by a large factor. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the spatial dimension. ! ! Input, integer N, the number of cell generators. ! ! Input, integer SAMPLE_NUM, the number of sample points. ! ! Input, real ( kind = rk ) S(DIM_NUM,SAMPLE_NUM), the points to be checked. ! ! Input, real ( kind = rk ) R(DIM_NUM,N), the cell generators. ! ! Output, integer NEAREST(SAMPLE_NUM), the index of the nearest ! cell generators. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer dim_num integer sample_num real ( kind = rk ) dist_sq_min real ( kind = rk ) dist_sq integer jr integer js integer nearest(sample_num) real ( kind = rk ) r(dim_num,n) real ( kind = rk ) s(dim_num,sample_num) do js = 1, sample_num dist_sq_min = huge ( dist_sq_min ) nearest(js) = -1 do jr = 1, n dist_sq = sum ( ( r(1:dim_num,jr) - s(1:dim_num,js) )**2 ) if ( dist_sq < dist_sq_min ) then dist_sq_min = dist_sq nearest(js) = jr end if end do end do return end subroutine generator_initialize ( random_generator, n, seed, generator ) !*****************************************************************************80 ! !! GENERATOR_INITIALIZE sets initial values for the generators. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer RANDOM_GENERATOR, indicates the initialization. ! 0, random points. ! 1, spiral points. ! 2, soccer centers (N must be 32). ! 3, soccer vertices (N must be 60). ! 4, Halton points. ! ! Input, integer N, the number of cell generatorrs. ! ! Input, integer SEED, a seed for the random ! number generator. ! ! Output, real ( kind = rk ) GENERATOR(3,N), the initial values for ! the cell generators. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) generator(3,n) integer j integer random_generator integer seed write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Initialize the Voronoi cell generators by...' if ( random_generator == 0 ) then write ( *, '(a)' ) ' ...RANDOM POINTS.' else if ( random_generator == 1 ) then write ( *, '(a)' ) ' ...SPIRAL POINTS' else if ( random_generator == 2 ) then write ( *, '(a)' ) ' ...SOCCER BALL CENTERS (Requires N = 32)' else if ( random_generator == 3 ) then write ( *, '(a)' ) ' ...SOCCER BALL VERTICES (Requires N = 60)' else if ( random_generator == 4 ) then write ( *, '(a)' ) ' ...HALTON points' end if if ( random_generator == 0 ) then call sphere_unit_samples_3d ( n, seed, generator ) else if ( random_generator == 1 ) then call sphere_unit_spiralpoints_3d ( n, generator ) else if ( random_generator == 2 ) then if ( n == 32 ) then call soccer_centers ( generator ) do j = 1, n generator(1:3,j) = generator(1:3,j) & / sqrt ( sum ( generator(1:3,j)**2 ) ) end do else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPHERE_CVT - Fatal error!' write ( *, '(a)' ) ' This option requires N = 32.' stop end if else if ( random_generator == 3 ) then if ( n == 60 ) then call soccer_vertices ( generator ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPHERE_CVT - Fatal error!' write ( *, '(a)' ) ' This option requires N = 60.' stop end if else if ( random_generator == 4 ) then call sphere_unit_haltons_3d ( n, generator ) end if call r8mat_transpose_print ( 3, n, generator, ' Initial generators:' ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is a value between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is a value between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine halton_memory ( action, name, dim_num, value ) !*****************************************************************************80 ! !! HALTON_MEMORY sets or returns quantities associated with the Halton sequence. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) ACTION, the desired action. ! 'GET' means get the value of a particular quantity. ! 'SET' means set the value of a particular quantity. ! 'INC' means increment the value of a particular quantity. ! (Only the SEED can be incremented.) ! ! Input, character ( len = * ) NAME, the name of the quantity. ! 'BASE' means the Halton base or bases. ! 'DIM_NUM' means the spatial dimension. ! 'SEED' means the current Halton seed. ! ! Input/output, integer DIM_NUM, the dimension of the quantity. ! If ACTION is 'SET' and NAME is 'BASE', then DIM_NUM is input, and ! is the number of entries in VALUE to be put into BASE. ! ! Input/output, integer VALUE(DIM_NUM), contains a value. ! If ACTION is 'SET', then on input, VALUE contains values to be assigned ! to the internal variable. ! If ACTION is 'GET', then on output, VALUE contains the values of ! the specified internal variable. ! If ACTION is 'INC', then on input, VALUE contains the increment to ! be added to the specified internal variable. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = * ) action integer, allocatable, save :: base(:) logical, save :: first_call = .true. integer i character ( len = * ) name integer dim_num integer, save :: dim_num_save = 0 integer prime integer, save :: seed = 1 integer value(*) if ( first_call ) then dim_num_save = 1 allocate ( base(dim_num_save) ) base(1) = 2 first_call = .false. end if ! ! Set ! if ( action(1:1) == 'S' .or. action(1:1) == 's' ) then if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then if ( dim_num_save /= dim_num ) then deallocate ( base ) dim_num_save = dim_num allocate ( base(dim_num_save) ) end if base(1:dim_num) = value(1:dim_num) else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then if ( dim_num_save /= value(1) ) then deallocate ( base ) dim_num_save = value(1) allocate ( base(dim_num_save) ) do i = 1, dim_num_save base(i) = prime ( i ) end do else dim_num_save = value(1) end if else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then seed = value(1) end if ! ! Get ! else if ( action(1:1) == 'G' .or. action(1:1) == 'g' ) then if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then value(1:dim_num_save) = base(1:dim_num_save) else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then value(1) = dim_num_save else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then value(1) = seed end if ! ! Increment ! else if ( action(1:1) == 'I' .or. action(1:1) == 'i' ) then if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then seed = seed + value(1) end if end if return end subroutine halton_vector_sequence ( dim_num, n, r ) !*****************************************************************************80 ! !! HALTON_VECTOR_SEQUENCE: next N elements in the vector Halton sequence. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the dimension of the element. ! ! Input, integer N, the number of elements desired. ! ! Output, real ( kind = rk ) R(DIM_NUM,N), the next N elements of the ! current vector Halton sequence. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer dim_num integer n integer base(dim_num) real ( kind = rk ) r(dim_num,n) integer seed integer value(1) call halton_memory ( 'GET', 'SEED', 1, value ) seed = value(1) call halton_memory ( 'GET', 'BASE', dim_num, base ) call i4_to_halton_vector_sequence ( seed, base, dim_num, n, r ) value(1) = n call halton_memory ( 'INC', 'SEED', 1, value ) return end function i4_modp ( i, j ) !*****************************************************************************80 ! !! I4_MODP returns the nonnegative remainder of integer division. ! ! Discussion: ! ! If ! NREM = I4_MODP ( I, J ) ! NMULT = ( I - NREM ) / J ! then ! I = J * NMULT + NREM ! where NREM is always nonnegative. ! ! The MOD function computes a result with the same sign as the ! quantity being divided. Thus, suppose you had an angle A, ! and you wanted to ensure that it was between 0 and 360. ! Then mod(A,360) would do, if A was positive, but if A ! was negative, your result would be between -360 and 0. ! ! On the other hand, I4_MODP(A,360) is between 0 and 360, always. ! ! Example: ! ! I J MOD I4_MODP Factorization ! ! 107 50 7 7 107 = 2 * 50 + 7 ! 107 -50 7 7 107 = -2 * -50 + 7 ! -107 50 -7 43 -107 = -3 * 50 + 43 ! -107 -50 -7 43 -107 = 3 * -50 + 43 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number to be divided. ! ! Input, integer J, the number that divides I. ! ! Output, integer I4_MODP, the nonnegative remainder when I is ! divided by J. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer i4_modp integer j if ( j == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_MODP - Fatal error!' write ( *, '(a,i8)' ) ' I4_MODP ( I, J ) called with J = ', j stop end if i4_modp = mod ( i, j ) if ( i4_modp < 0 ) then i4_modp = i4_modp + abs ( j ) end if return end subroutine i4_to_halton_vector_sequence ( seed, base, dim_num, n, r ) !*****************************************************************************80 ! !! I4_TO_HALTON_VECTOR_SEQUENCE computes N elements of a vector Halton sequence. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! John Halton, ! Numerische Mathematik, ! Volume 2, pages 84-90. ! ! Parameters: ! ! Input, integer SEED, the index of the desired element. ! Only the absolute value of SEED is considered. SEED = 0 is allowed, ! and returns R = 0. ! ! Input, integer BASE(DIM_NUM), the Halton bases, which should ! be distinct prime numbers. This routine only checks that each base ! is greater than 1. ! ! Input, integer DIM_NUM, the dimension of the sequence. ! ! Input, integer N, the number of elements of the sequence. ! ! Output, real ( kind = rk ) R(DIM_NUM,N), the SEED-th through (SEED+N-1)-th ! elements of the Halton sequence for the given bases. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer dim_num integer base(dim_num) real ( kind = rk ) base_inv integer digit(n) integer i real ( kind = rk ) r(dim_num,n) integer seed integer seed2(n) ! ! We assume that N is large compared to DIM_NUM, so our implicit inner ! loop is on N. ! do i = 1, dim_num call i4vec_indicator ( n, seed2 ) seed2(1:n) = seed2(1:n) - 1 + abs ( seed ) r(i,1:n) = 0.0D+00 if ( base(i) <= 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I_TO_HALTON_VECTOR_SEQUENCE - Fatal error!' write ( *, '(a)' ) ' An input base BASE(I) is <= 1!' write ( *, '(a,i8)' ) ' For index I = ', i write ( *, '(a,i8)' ) ' BASE(I) = ', base(i) stop end if base_inv = 1.0D+00 / real ( base(i), kind = rk ) do while ( any ( seed2(1:n) /= 0 ) ) digit(1:n) = mod ( seed2(1:n), base(i) ) r(i,1:n) = r(i,1:n) + real ( digit(1:n), kind = rk ) * base_inv base_inv = base_inv / real ( base(i), kind = rk ) seed2(1:n) = seed2(1:n) / base(i) end do end do return end function i4_wrap ( ival, ilo, ihi ) !*****************************************************************************80 ! !! I4_WRAP forces an integer to lie between given limits by wrapping. ! ! Example: ! ! ILO = 4, IHI = 8 ! ! I I4_WRAP ! ! -2 8 ! -1 4 ! 0 5 ! 1 6 ! 2 7 ! 3 8 ! 4 4 ! 5 5 ! 6 6 ! 7 7 ! 8 8 ! 9 4 ! 10 5 ! 11 6 ! 12 7 ! 13 8 ! 14 4 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer IVAL, an integer value. ! ! Input, integer ILO, IHI, the desired bounds. ! ! Output, integer I4_WRAP, a "wrapped" version of IVAL. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i4_modp integer i4_wrap integer ihi integer ilo integer ival integer wide wide = ihi + 1 - ilo if ( wide == 0 ) then i4_wrap = ilo else i4_wrap = ilo + i4_modp ( ival - ilo, wide ) end if return end subroutine i4vec_indicator ( n, a ) !*****************************************************************************80 ! !! I4VEC_INDICATOR sets an I4VEC to the indicator vector A(I)=I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, integer A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer i do i = 1, n a(i) = i end do return end subroutine motion ( n, x1, x2 ) !*****************************************************************************80 ! !! MOTION computes the "motion" between two sets of points on the sphere. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) X1(3,N), X2(3,N), the sets of points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) angle real ( kind = rk ) arc_cosine integer i real ( kind = rk ) motion_average real ( kind = rk ) motion_max real ( kind = rk ) motion_min real ( kind = rk ) motion_total real ( kind = rk ) x1(3,n) real ( kind = rk ) x2(3,n) motion_max = - huge ( motion_max ) motion_min = huge ( motion_min ) motion_total = 0.0D+00 do i = 1, n angle = arc_cosine ( dot_product ( x1(1:3,i), x2(1:3,i) ) ) ! ! This call to ACOS results in occasional NaN's... ! ! angle = acos ( dot_product ( x1(1:3,i), x2(1:3,i) ) ) motion_max = max ( motion_max, angle ) motion_min = min ( motion_min, angle ) motion_total = motion_total + angle end do motion_average = motion_total / real ( n, kind = rk ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Generator motions:' write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Total = ', motion_total write ( *, '(a,g14.6)' ) ' Average = ', motion_average write ( *, '(a,g14.6)' ) ' Minimum = ', motion_min write ( *, '(a,g14.6)' ) ' Maximum = ', motion_max return end function prime ( n ) !*****************************************************************************80 ! !! PRIME returns any of the first PRIME_MAX prime numbers. ! ! Discussion: ! ! PRIME_MAX is 1600, and the largest prime stored is 13499. ! ! Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 February 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! US Department of Commerce, 1964, pages 870-873. ! ! Daniel Zwillinger, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, ! CRC Press, 1996, pages 95-98. ! ! Parameters: ! ! Input, integer N, the index of the desired prime number. ! In general, is should be true that 0 <= N <= PRIME_MAX. ! N = -1 returns PRIME_MAX, the index of the largest prime available. ! N = 0 is legal, returning PRIME = 1. ! ! Output, integer PRIME, the N-th prime. If N is out of range, ! PRIME is returned as -1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: prime_max = 1600 integer, save :: icall = 0 integer n integer, save, dimension ( prime_max ) :: npvec integer prime if ( icall == 0 ) then icall = 1 npvec(1:100) = (/ & 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, & 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, & 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, & 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, & 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, & 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, & 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, & 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, & 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, & 467, 479, 487, 491, 499, 503, 509, 521, 523, 541 /) npvec(101:200) = (/ & 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, & 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, & 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, & 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, & 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, & 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, & 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, & 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, & 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, & 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223 /) npvec(201:300) = (/ & 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, & 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, & 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, & 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, & 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, & 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, & 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, & 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, & 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, & 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987 /) npvec(301:400) = (/ & 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, & 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, & 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, & 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, & 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, & 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, & 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, & 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, & 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, & 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741 /) npvec(401:500) = (/ & 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, & 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, & 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, & 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, & 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, & 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, & 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, & 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, & 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, & 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571 /) npvec(501:600) = (/ & 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, & 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, & 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, & 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, & 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, & 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, & 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, & 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, & 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, & 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409 /) npvec(601:700) = (/ & 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, & 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, & 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, & 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, & 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, & 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, & 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, & 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, & 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, & 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279 /) npvec(701:800) = (/ & 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, & 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, & 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, & 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, & 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, & 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, & 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, & 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, & 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, & 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133 /) npvec(801:900) = (/ & 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, & 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, & 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, & 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, & 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, & 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, & 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, & 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, & 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, & 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997 /) npvec(901:1000) = (/ & 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, & 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, & 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, & 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, & 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, & 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, & 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, & 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, & 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, & 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919 /) npvec(1001:1100) = (/ & 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, & 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, & 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, & 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, & 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, & 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, & 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, & 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, & 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, & 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831 /) npvec(1101:1200) = (/ & 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, & 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, & 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, & 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, & 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, & 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, & 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, & 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, & 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, & 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733 /) npvec(1201:1300) = (/ & 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, & 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, & 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, & 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, & 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, & 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, & 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, & 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, & 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, & 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657 /) npvec(1301:1400) = (/ & 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, & 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, & 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, & 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, & 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, & 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, & 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, & 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, & 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, & 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657 /) npvec(1401:1500) = (/ & 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, & 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, & 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, & 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, & 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, & 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, & 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, & 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, & 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, & 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553 /) npvec(1501:1600) = (/ & 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, & 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, & 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, & 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, & 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, & 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, & 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, & 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, & 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, & 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 /) end if if ( n == -1 ) then prime = prime_max else if ( n == 0 ) then prime = 1 else if ( n <= prime_max ) then prime = npvec(n) else prime = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRIME - Fatal error!' write ( *, '(a,i8)' ) ' Illegal prime index N = ', n write ( *, '(a,i8)' ) ' N should be between 1 and PRIME_MAX =', prime_max stop end if return end subroutine r83vec_unit_l2 ( n, x ) !*****************************************************************************80 ! !! R83VEC_UNIT_L2 makes each R83 vector in an R83VEC have unit L2 norm. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of vectors. ! ! Input/output, real ( kind = rk ) X(3,N), the coordinates of N vectors. ! On output, the nonzero vectors have been scaled to have unit L2 norm. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i real ( kind = rk ) norm real ( kind = rk ) x(3,n) do i = 1, n norm = sqrt ( sum ( x(1:3,i)**2 ) ) if ( norm /= 0.0D+00 ) then x(1:3,i) = x(1:3,i) / norm end if end do return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)' ) i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,a,5a14)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, real ( kind = rk ) TABLE(M,N), the table data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string real ( kind = rk ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine r8vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input/output, integer SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R(N), the vector of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer k integer seed real ( kind = rk ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if r(i) = real ( seed, kind = rk ) * 4.656612875D-10 end do return end subroutine random_initialize ( seed ) !*****************************************************************************80 ! !! RANDOM_INITIALIZE initializes the FORTRAN 90 random number seed. ! ! Discussion: ! ! If you don't initialize the random number generator, its behavior ! is not specified. If you initialize it simply by: ! ! call random_seed ( ) ! ! its behavior is not specified. On the DEC ALPHA, if that's all you ! do, the same random number sequence is returned. In order to actually ! try to scramble up the random number generator a bit, this routine ! goes through the tedious process of getting the size of the random ! number seed, making up values based on the current time, and setting ! the random number seed. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, integer SEED. ! If SEED is zero on input, then you're asking this routine to come up ! with a seed value, which is returned as output. ! If SEED is nonzero on input, then you're asking this routine to ! use the input value of SEED to initialize the random number generator. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer count integer count_max integer count_rate integer i integer seed integer, allocatable :: seed_vector(:) integer seed_size real ( kind = rk ) t ! ! Initialize the random number seed. ! call random_seed ( ) ! ! Determine the size of the random number seed. ! call random_seed ( size = seed_size ) ! ! Allocate a seed of the right size. ! allocate ( seed_vector(seed_size) ) if ( seed /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RANDOM_INITIALIZE' write ( *, '(a,i12)' ) ' Initialize RANDOM_NUMBER with user SEED = ', seed else call system_clock ( count, count_rate, count_max ) seed = count write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RANDOM_INITIALIZE' write ( *, '(a,i12)' ) & ' Initialize RANDOM_NUMBER with arbitrary SEED = ', seed end if ! ! Now set the seed. ! seed_vector(1:seed_size) = seed call random_seed ( put = seed_vector(1:seed_size) ) ! ! Free up the seed space. ! deallocate ( seed_vector ) ! ! Call the random number routine a bunch of times. ! do i = 1, 100 call random_number ( harvest = t ) end do return end subroutine sphere_cvt_centroid ( n, generator, sample_num, sample_batch, & sample_type, seed, centroid ) !*****************************************************************************80 ! !! SPHERE_CVT_CENTROID computes the centroids of the regions. ! ! Discussion: ! ! The routine is given a set of points, called "generators", which ! define a tessellation of the region into Voronoi cells. Each point ! defines a cell. Each cell, in turn, has a centroid, but it is ! unlikely that the centroid and the generator coincide. ! ! Each time this CVT iteration is carried out, an attempt is made ! to modify the generators in such a way that they are closer and ! closer to being the centroids of the Voronoi cells they generate. ! ! A large number of sample points are generated, and the nearest generator ! is determined. A count is kept of how many points were nearest to each ! generator. Once the sampling is completed, the location of all the ! generators is adjusted. This step should decrease the discrepancy ! between the generators and the centroids. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of Voronoi cells. ! ! Input, real ( kind = rk ) GENERATOR(3,N), the Voronoi cell generators. ! ! Input, integer SAMPLE_NUM, the total number of sample points. ! ! Input, integer SAMPLE_BATCH, the maximum size of a single ! batch of sample points. ! ! Input/output, integer SEED, a seed for the random ! number generator. ! ! Output, real ( kind = rk ) CENTROID(3,N), the Voronoi cell centroids. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer sample_batch real ( kind = rk ) centroid(3,n) real ( kind = rk ) generator(3,n) integer count(n) integer j integer nearest(sample_batch) real ( kind = rk ) norm integer, parameter :: random_sampler = 0 real ( kind = rk ) sample(3,sample_batch) integer sample_num integer sample_size integer sample_sofar integer sample_type integer seed integer value(1) centroid(1:3,1:n) = 0.0D+00 count(1:n) = 0 sample_sofar = 0 if ( sample_type == 2 ) then value(1) = 1 call halton_memory ( 'SET', 'SEED', 1, value ) end if do sample_size = sample_batch sample_size = min ( sample_size, sample_num - sample_sofar ) if ( sample_type == 1 ) then call sphere_unit_samples_3d ( sample_size, seed, sample ) else if ( sample_type == 2 ) then call sphere_unit_haltons_3d ( sample_size, sample ) end if call find_closest ( 3, n, sample_size, sample, generator, nearest ) do j = 1, sample_size centroid(1:3,nearest(j)) = centroid(1:3,nearest(j)) + sample(1:3,j) count(nearest(j)) = count(nearest(j)) + 1 end do sample_sofar = sample_sofar + sample_size if ( sample_num <= sample_sofar ) then exit end if end do ! ! Average. ! do j = 1, n if ( count(j) /= 0 ) then centroid(1:3,j) = centroid(1:3,j) / real ( count(j), kind = rk ) end if end do ! ! Normalize. ! do j = 1, n if ( count(j) /= 0 ) then norm = sqrt ( sum ( centroid(1:3,j)**2 ) ) if ( norm /= 0.0D+00 ) then centroid(1:3,j) = centroid(1:3,j) / norm end if end if end do return end subroutine soccer_centers ( x ) !*****************************************************************************80 ! !! SOCCER_CENTERS returns the centers of the truncated icosahedron in 3D. ! ! Discussion: ! ! The shape is a truncated icosahedron, which is the design used ! on a soccer ball. There are 12 pentagons and 20 hexagons. ! ! The centers are computed by averaging the vertices. Note that ! the vertices of the shape lie on the unit sphere, but the face ! centers do not. To force this to happen, simply normalize each point. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X(3,32), the coordinates of the 32 face ! centers of a truncated icosahedron. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) x(3,32) x(1:3,1:32) = reshape ( & (/ 0.176084, 0.333333, 0.854729, & -0.374587, -0.042441, 0.854729, & 0.185551, -0.271913, 0.900685, & 0.681916, -0.042441, 0.637077, & -0.371103, 0.543825, 0.697234, & -0.209088, -0.650456, 0.637077, & 0.616466, 0.543825, 0.493784, & 0.443867, -0.650456, 0.502561, & -0.804597, 0.222222, 0.419426, & 0.086406, 0.830237, 0.419426, & -0.731143, -0.375774, 0.493784, & 0.904859, 0.222222, 0.067258, & 0.866776, -0.375774, 0.164595, & -0.519688, 0.761567, 0.150394, & 0.033908, -0.944118, 0.164595, & -0.536815, -0.761567, 0.067258, & 0.536815, 0.761567, -0.067258, & 0.519688, -0.761567, -0.150394, & -0.866776, 0.375774, -0.164595, & -0.904859, -0.222222, -0.067258, & -0.033908, 0.944118, -0.164595, & 0.731143, 0.375774, -0.493784, & 0.804597, -0.222222, -0.419426, & -0.443866, 0.650456, -0.502561, & -0.086406, -0.830237, -0.419426, & -0.616466, -0.543825, -0.493784, & 0.209088, 0.650456, -0.637077, & 0.371103, -0.543825, -0.697234, & -0.681916, 0.042441, -0.637077, & 0.374587, 0.042441, -0.854729, & -0.185551, 0.271913, -0.900685, & -0.176084, -0.333333, -0.854729 /), (/ 3, 32 /) ) return end subroutine soccer_vertices ( x ) !*****************************************************************************80 ! !! SOCCER_VERTICES returns the vertices of the truncated icosahedron in 3D. ! ! Discussion: ! ! The shape is a truncated icosahedron, which is the design used ! on a soccer ball. There are 12 pentagons and 20 hexagons. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X(3,60), the coordinates of the 60 vertices of ! a truncated icosahedron. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) x(3,60) x(1:3,1:60) = reshape ( & (/ -1.00714, 0.153552, 0.067258, & -0.960284, 0.0848813, -0.33629, & -0.95172, -0.153552, 0.33629, & -0.860021, 0.529326, 0.150394, & -0.858, -0.290893, -0.470806, & -0.849436, -0.529326, 0.201774, & -0.802576, -0.597996, -0.201774, & -0.7842, 0.418215, -0.502561, & -0.749174, -0.0848813, 0.688458, & -0.722234, 0.692896, -0.201774, & -0.657475, 0.597996, 0.502561, & -0.602051, 0.290893, 0.771593, & -0.583675, -0.692896, 0.470806, & -0.579632, -0.333333, -0.771593, & -0.52171, -0.418215, 0.771593, & -0.505832, 0.375774, -0.803348, & -0.489955, -0.830237, -0.33629, & -0.403548, 0.000000, -0.937864, & -0.381901, 0.925138, -0.201774, & -0.352168, -0.666667, -0.688458, & -0.317142, 0.830237, 0.502561, & -0.271054, -0.925138, 0.33629, & -0.227464, 0.333333, 0.937864, & -0.224193, -0.993808, -0.067258, & -0.179355, 0.993808, 0.150394, & -0.165499, 0.608015, -0.803348, & -0.147123, -0.375774, 0.937864, & -0.103533, 0.882697, -0.502561, & -0.0513806, 0.666667, 0.771593, & 0.0000000, 0.000000, 1.021, & 0.0000000, 0.000000, -1.021, & 0.0513806, -0.666667, -0.771593, & 0.103533, -0.882697, 0.502561, & 0.147123, 0.375774, -0.937864, & 0.165499, -0.608015, 0.803348, & 0.179355, -0.993808, -0.150394, & 0.224193, 0.993808, 0.067258, & 0.227464, -0.333333, -0.937864, & 0.271054, 0.925138, -0.33629, & 0.317142, -0.830237, -0.502561, & 0.352168, 0.666667, 0.688458, & 0.381901, -0.925138, 0.201774, & 0.403548, 0.000000, 0.937864, & 0.489955, 0.830237, 0.33629, & 0.505832, -0.375774, 0.803348, & 0.521710, 0.418215, -0.771593, & 0.579632, 0.333333, 0.771593, & 0.583675, 0.692896, -0.470806, & 0.602051, -0.290893, -0.771593, & 0.657475, -0.597996, -0.502561, & 0.722234, -0.692896, 0.201774, & 0.749174, 0.0848813, -0.688458, & 0.784200, -0.418215, 0.502561, & 0.802576, 0.597996, 0.201774, & 0.849436, 0.529326, -0.201774, & 0.858000, 0.290893, 0.470806, & 0.860021, -0.529326, -0.150394, & 0.951720, 0.153552, -0.33629, & 0.960284, -0.0848813, 0.33629, & 1.007140, -0.153552, -0.067258 /), (/ 3, 60 /) ) return end subroutine sphere_unit_haltons_3d ( n, x ) !*****************************************************************************80 ! !! SPHERE_UNIT_HALTONS_3D picks a Halton point on the unit sphere in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X(3), the sample point. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) phi(n) real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 real ( kind = rk ) theta(n) real ( kind = rk ) u(2,n) integer value(1) real ( kind = rk ) vdot(n) real ( kind = rk ) x(3,n) value(1) = 0 call halton_memory ( 'SET', 'SEED', 1, value ) value(1) = 3 call halton_memory ( 'SET', 'DIM_NUM', 1, value ) call halton_vector_sequence ( 2, n, u ) ! ! Pick a uniformly random VDOT, which must be between -1 and 1. ! This represents the dot product of the random vector with the Z unit vector. ! ! Note: this works because the surface area of the sphere between ! Z and Z + dZ is independent of Z. So choosing Z uniformly chooses ! a patch of area uniformly. ! vdot(1:n) = 2.0D+00 * u(1,1:n) - 1.0E+00 phi(1:n) = acos ( vdot(1:n) ) ! ! Pick a uniformly random rotation between 0 and 2 Pi around the ! axis of the Z vector. ! theta(1:n) = 2.0D+00 * pi * u(2,1:n) x(1,1:n) = cos ( theta(1:n) ) * sin ( phi(1:n) ) x(2,1:n) = sin ( theta(1:n) ) * sin ( phi(1:n) ) x(3,1:n) = cos ( phi(1:n) ) return end subroutine sphere_unit_samples_3d ( n, seed, x ) !*****************************************************************************80 ! !! SPHERE_UNIT_SAMPLES_3D picks a random point on the unit sphere in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of points to generate. ! ! Input/output, integer SEED, a seed for the random ! number generator. ! ! Output, real ( kind = rk ) X(3,N), the random points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) phi(n) real ( kind = rk ), parameter :: pi = 3.141592653589793D+00 integer seed real ( kind = rk ) theta(n) real ( kind = rk ) x(3,n) ! ! Pick a uniformly random value between -1 and 1. ! This represents the dot product of the random vector with the Z unit vector. ! ! Note: this works because the surface area of the sphere between ! Z and Z + dZ is independent of Z. So choosing Z uniformly chooses ! a patch of area uniformly. ! call r8vec_uniform_01 ( n, seed, phi ) phi(1:n) = 2.0D+00 * phi(1:n) - 1.0D+00 phi(1:n) = acos ( phi(1:n) ) ! ! Pick a uniformly random rotation between 0 and 2 Pi around the ! axis of the Z vector. ! call r8vec_uniform_01 ( n, seed, theta ) theta(1:n) = 2.0D+00 * pi * theta(1:n) x(1,1:n) = cos ( theta(1:n) ) * sin ( phi(1:n) ) x(2,1:n) = sin ( theta(1:n) ) * sin ( phi(1:n) ) x(3,1:n) = cos ( phi(1:n) ) return end subroutine sphere_unit_spiralpoints_3d ( n, x ) !*****************************************************************************80 ! !! SPHERE_UNIT_SPIRALPOINTS_3D produces spiral points on the unit sphere in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 June 2002 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Edward Saff, Arno Kuijlaars, ! Distributing Many Points on a Sphere, ! The Mathematical Intelligencer, ! Volume 19, Number 1, 1997, pages 5-11. ! ! Parameters: ! ! Input, integer N, the number of points to create. ! ! Output, real ( kind = rk ) X(3,N), the coordinates of the points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) cosphi integer i real ( kind = rk ) sinphi real ( kind = rk ) theta real ( kind = rk ), parameter :: two_pi = 2.0D+00 * 3.141592653589793D+00 real ( kind = rk ) x(3,n) do i = 1, n cosphi = ( real ( n - i, kind = rk ) * ( -1.0D+00 ) & + real ( i - 1, kind = rk ) * ( +1.0D+00 ) ) & / real ( n - 1, kind = rk ) sinphi = sqrt ( 1.0D+00 - cosphi**2 ) if ( i == 1 .or. i == n ) then theta = 0.0D+00 else theta = theta + 3.6D+00 / ( sinphi * sqrt ( real ( n, kind = rk ) ) ) theta = mod ( theta, two_pi ) end if x(1,i) = sinphi * cos ( theta ) x(2,i) = sinphi * sin ( theta ) x(3,i) = cosphi end do return end subroutine voronoi_vertices ( nc, centers, nv, vertices ) !*****************************************************************************80 ! !! VORONOI_VERTICES returns the vertices of a Voronoi diagram. ! ! Discussion: ! ! A set of NC points on the unit sphere is given. ! ! The appropriate STRIPACK routines are called to generate the ! Voronoi diagram of the points. ! ! The vertices of this diagram are returned. ! ! If we start with NC center points, then the Delaunay triangulation ! will have: ! ! * NC vertices ! * the number of edges will be E = ( 3 * F ) / 2 because each ! triangle adds 3 sides, but each side is added twice. ! * Euler's formula will read F - ( 3 * F ) / 2 + NC = 2 ! ! Therefore, the number of triangles will be: ! ! F = 2 * ( NC - 2 ) ! ! But each Delaunay triangle corresponds to a Voronoi vertex. ! ! If we add the NV vertices to our NC = NC(0) center points to create a ! refined mesh of NC(1) points, then: ! ! NC(1) = NC(0) + 2 * ( NC(0) - 2 ) = 3 * ( NC(0) - 2 ) + 2 ! ! which can be rewritten as: ! ! NC(1) - 2 = 3 * ( NC(0) - 2 ) ! ! and if this process is repeated K times, ! ! NC(K) - 2 = 3^K * ( NC(0) - 2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer NC, the number of "center" points. ! ! Input, real ( kind = rk ) CENTERS(3,NC), the coordinates of the ! center points. ! ! Output, integer NV, the number of vertices. NV = 2 * NC - 4. ! ! Output, real ( kind = rk ) VERTICES(3,NV), the coordinates of the vertices. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nc real ( kind = rk ) centers(3,nc) real ( kind = rk ) ds(nc) integer ierror integer iwk(2*nc) integer lbtri(6,nc) integer lend(nc) integer list(6*nc) integer listc(6*nc) integer lnew integer lptr(6*nc) integer ltri(9,2*nc-4) integer nb integer nt integer nv real ( kind = rk ) rc(2*nc-4) real ( kind = rk ) vertices(3,2*nc-4) real ( kind = rk ) x(nc) real ( kind = rk ) xc(2*nc-4) real ( kind = rk ) y(nc) real ( kind = rk ) yc(2*nc-4) real ( kind = rk ) z(nc) real ( kind = rk ) zc(2*nc-4) ! ! Copy the points out. ! x(1:nc) = centers(1,1:nc) y(1:nc) = centers(2,1:nc) z(1:nc) = centers(3,1:nc) ! ! Create the triangulation. ! call trmesh ( nc, x, y, z, list, lptr, lend, lnew, iwk, iwk(nc+1), ds, & ierror ) if ( ierror == -2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_VERTICES - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' The first 3 nodes are collinear.' stop end if if ( 0 < ierror ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_VERTICES - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' Duplicate nodes encountered.' stop end if ! ! Create a triangle list. ! call trlist ( nc, list, lptr, lend, 9, nt, ltri, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_VERTICES - Fatal error!' write ( *, '(a)' ) ' Error in TRLIST.' stop end if ! ! Construct the Voronoi diagram. ! ! Note that the triangulation data structure is altered if 0 < NB. ! call crlist ( nc, nc, x, y, z, list, lend, lptr, lnew, & lbtri, listc, nb, xc, yc, zc, rc, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_VERTICES - Fatal error!' write ( *, '(a)' ) ' Error in CRLIST.' write ( *, '(a,i8)' ) ' IERROR = ', ierror stop end if ! ! Pack up the vertices. ! nv = 2 * nc - 4 vertices(1,1:nv) = xc(1:nv) vertices(2,1:nv) = yc(1:nv) vertices(3,1:nv) = zc(1:nv) return end