program main !*****************************************************************************80 ! !! MAIN is the main program for SPARSEKIT_PRB11. ! ! Discussion: ! ! This driver will generate a finite element matrix for the ! conduction problem ! ! -Div ( K(x,y) Grad u ) = f ! u = 0 on boundary ! ! (Dirichlet boundary conditions). The matrix is returned ! assembled in compressed sparse row format. Unassembled matrices ! can be generated (using genfeu) but this is not supported yet. ! ! This driver will provide a few grids if wanted, with an ! arbitrary number of levels of refinement (as permitted by the ! sizes of the arrays as declared below). ! ! Modified: ! ! 02 July 2005 ! ! Reference: ! ! Noborou Kikuchi ! Finite element methods in mechanics, ! Cambridge University Press, 1986. ! implicit none integer, parameter :: maxnx = 2000 integer, parameter :: maxnel = 4000 real ( kind = 8 ) a(7*maxnx) real ( kind = 8 ) f(3*maxnx) real ( kind = 8 ) fs(3*maxnx) character ( len = 50 ) gridfile character ( len = 2 ) guesol integer ia(maxnx) integer ichild(8,maxnel) integer ierr integer ifmt integer ii integer :: iin = 7 integer ijk(3,maxnel) integer :: iout = 8 integer iparnts(2,maxnx) integer iu integer iwk(maxnx) integer ja(7*maxnx) integer job integer jwk(maxnx) character ( len = 8 ) key character ( len = 50 ) matfile integer n integer n2 integer :: na = 3000 integer nb integer :: ndeg = 8 integer nelmax integer nelx integer nelxnew integer ngrid integer nodcode(maxnx) integer :: node = 3 integer nref integer nx integer nxmax integer nxnew character ( len = 72 ) title character ( len = 3 ) type real ( kind = 8 ) x(maxnx) external xyk real ( kind = 8 ) y(maxnx) ! ! Choose starting grid. ! iu = 10 call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPARSEKIT_PRB11' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Demonstrate the SPARSKIT routines that can generate' write ( *, '(a)' ) ' test matrices based on finite element grids.' write ( *, '(a)' ) ' ' ! ! Force NGRID to be 1. Normally, this would be chosen by the user. ! ngrid = 1 ! ! Generate the grid. ! if ( ngrid == 7 ) then write(*,*)'Grid type 7 : user provided initial grid ' write(*,*)'Filename for initial grid :' read(*,'(A)') gridfile open ( unit = iin, file = gridfile, STATUS = 'old' ) end if nx = 0 nelx = 0 call ingrid(ngrid,iin,nx,nelx,node,x,y,nodcode,ijk) if ( ngrid == 7 ) then close ( unit = iin ) end if ! ! Refine the grid. Here we choose NREF=2, although this would ! normally be interactively chosen. ! nref = 2 nxmax = maxnx nelmax= maxnel nb = 0 do ii = 1, nref ! ! estimate the number nx and nelx at next refinement level. ! call checkref(nx,nelx,ijk,node,nodcode,nb,nxnew,nelxnew) if ( nxmax < nxnew .or. nelmax < nelxnew ) then WRITE ( *, * ) 'Was able to do only ', ii-1 ,' refinements' exit end if call refall(nx,nelx,ijk,node,ndeg,x,y,ichild,iparnts,nodcode, & nxmax, nelmax, ierr) if (ierr /= 0) then WRITE ( *, * ) '** ERROR IN REFALL : ierr =',ierr end if end do job = 0 call genfea ( nx, nelx, node, job, x, y, ijk, nodcode, fs, n2, & a, ja, ia, f, iwk, jwk, ierr, xyk ) ! ! Store matrix as a Harwell Boeing Matrix, by a call to prtmt. ! guesol = 'NN' title = ' FINITE ELEMENT TEST MATRIX FROM SPARSKIT ' type = 'RSA' key = 'SPARSKIT' ifmt = 104 job = 2 n = n2 ! ! Set the filename for the matrix data. ! matfile = 'test.mat' open ( unit = iout, file = matfile, STATUS = 'replace' ) call prtmt(n,n,a,ja,ia,f,guesol,title,key,type, & ifmt,job,iout) close ( UNIT = IOUT ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The information about the matrix generated has been' write ( *, '(a)' ) ' stored in a file, using Harwell-Boeing format. ' write ( *, '(a)' ) ' The file is "' // trim ( matfile ) // '".' write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SPARSEKIT_PRB11' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ingrid ( ngrid, iin, nx, nelx, node, x, y, nodcode, ijk ) !*****************************************************************************80 ! !! INGRID initializes the grid according to the choice NGRID. ! ! Discussion: ! ! There are 6 initial grids provided and the user can ! also enter his own grid as a seventh option. ! ! on entry: ! ! ngrid = integer indicating the grid chosen. ngrid=1...6 ! corresponds to one of the 6 examples supplied by ! SPARSKIT. ngrid = 7 is a user supplied initial grid. ! see below for additional information for the format. ! iin = integer containing the I/O unit number where to read ! the data from in case ngrid = 7. A dummy integer ! otherwise. ! node = integer = the number of nodes per element (should be ! set to three in this version). also the first dimension ! of array ijk. ! ! on return ! ! nx = integer . the number of nodes ! nelx = integer . the number of elements ! x, y = two real arrays containing the coordinates of the nodes. ! nodcode = an integer array containing the boundary information for ! each node with the following meaning. ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner node. ! ! ijk(node,*)= an integer array containing the connectivity matrix. ! ! ! format for user supplied grid (when ngrid = 7) ! ! option 7 is a user defined initial grid. ! ! format is as follows: ! line 1: two integers, the first containing the number of nodes ! the second the number of elements. ! line 2 to line nx+1: node information ! enter the following one line per node: ! * the number of the node in the numbering chosen (integer from ! taking the values 1 to nx), followed by ! * the coordinates of the nodes (2 reals) followed by ! the boundary information, an integer taking one of the ! values 0, 1, or 2, with the meaning explained above. ! ! line nx+2 to nx+nelx+1: connectivity matrix ! enter the following one line per element: ! * number of the element in the numbering chosen, followed by ! * The three numbers of the nodes (according to the above numbering ! of the nodes) that constitute the element, in a counter clock-wise ! order (this is in fact not important since it is checked by the ! subroutine chkelemt). ! ! AN EXAMPLE: consisting on one single element (a triangle) !------------ ! 3 1 ! 1 0.0000 0.0000 2 ! 2 4.0000 0.0000 2 ! 3 0.0000 4.0000 2 ! 1 1 2 3 ! implicit none integer node integer i integer ii integer iin integer ijk(node,*) integer j integer nelx integer ngrid integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ) y(*) if ( ngrid == 1 ) then call fgrid1 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 2 ) then call fgrid2 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 3 ) then call fgrid3 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 4 ) then call fgrid4 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 5 ) then call fgrid5 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 6 ) then call fgrid6 ( nx, nelx, node, x, y, nodcode, ijk ) else if ( ngrid == 7 ) then read (iin,*) nx, nelx do i = 1, nx read(iin,*) ii, x(ii), y(ii), nodcode(ii) end do do i = 1, nelx read(iin,*) ii, (ijk(j,ii),j=1,node) nelx = max ( nelx, ii ) end do end if call chkelmt ( nx, x, y, nelx, ijk, node ) return end subroutine fgrid1 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID1: initial grid for a simple square with two elements. ! ! 3 4 ! -------------- ! | . | ! | 2 . | ! | . | ! | . 1 | ! | . | ! -------------- ! 1 2 ! ! input parameters: node = first dimensoin of ijk (must be .ge. 3) ! output parameters: ! nx = number of nodes ! nelx = number of elemnts ! (x(1:nx), y(1:nx)) = coordinates of nodes ! nodcode(1:nx) = integer code for each node with the ! following meening: ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner point. ! ijk(1:3,1:nelx) = connectivity matrix. for a given element ! number nel, ijk(k,nel), k=1,2,3 represent the nodes ! composing the element nel. ! implicit none integer node integer ijk(node,*) integer, dimension ( 2 ) :: ijk1 = (/ 1, 1 /) integer, dimension ( 2 ) :: ijk2 = (/ 2, 4 /) integer, dimension ( 2 ) :: ijk3 = (/ 4, 3 /) integer k integer nelx integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ), dimension ( 4 ) :: x1 = (/ 0.0, 1.0, 0.0, 1.0 /) real ( kind = 8 ) y(*) real ( kind = 8 ), dimension ( 4 ) :: y1 = (/ 0.0, 0.0, 1.0, 1.0 /) nx = 4 do k = 1, nx x(k) = x1(k) y(k) = y1(k) nodcode(k) = 1 end do nodcode(2) = 2 nodcode(3) = 2 nelx = 2 do k = 1, nelx ijk(1,k) = ijk1(k) ijk(2,k) = ijk2(k) ijk(3,k) = ijk3(k) end do return end subroutine fgrid2 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID2: initial grid for a simple D-shaped region with 4 elemnts ! 6 ! | . ! | . ! | . ! | 4 . ! | . ! 4 -------------- 5 ! | . | ! | 3 . | ! | . | ! | . 2 | ! | . | ! -------------- ! | 2 . 3 ! | . ! | 1 . ! | . ! | . ! |. ! 1 !-------------------------------------------------------------- ! input parameters: node = first dimensoin of ijk (must be .ge. 3) ! output parameters: ! nx = number of nodes ! nelx = number of elemnts ! (x(1:nx), y(1:nx)) = coordinates of nodes ! nodcode(1:nx) = integer code for each node with the ! following meening: ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner point. ! ijk(1:3,1:nelx) = connectivity matrix. for a given element ! number nel, ijk(k,nel), k=1,2,3 represent the nodes ! composing the element nel. ! implicit none integer node integer ijk(node,*) integer ijk1(4) integer ijk2(4) integer ijk3(4) integer k integer nelx integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ) x1(6) real ( kind = 8 ) y(*) real ( kind = 8 ) y1(6) ! ! coordinates of nodal points ! data x1/0.0, 0.0, 1.0, 0.0, 1.0, 0.0/ data y1/0.0, 1.0, 1.0, 2.0, 2.0, 3.0/ ! !------------------|--|--|--| ! elements 1 2 3 4 !------------------|--|--|--| data ijk1 /1, 2, 2, 4/ data ijk2 /3, 3, 5, 5/ data ijk3 /2, 5, 4, 6/ nx = 6 do k = 1, nx x(k) = x1(k) y(k) = y1(k) nodcode(k) = 1 end do nelx = 4 do k = 1, nelx ijk(1,k) = ijk1(k) ijk(2,k) = ijk2(k) ijk(3,k) = ijk3(k) end do return end subroutine fgrid3 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID3: initial grid for a C-shaped region composed of 10 elements -- ! ! ! 10 11 12 ! --------------------------- ! | . | . | ! | 7 . | 9 . | ! | . | . | ! | . 8 | . 10 | ! | . | . | ! 7 --------------------------- ! | . |8 9 ! | 5 . | ! | . | ! | . 6 | ! 4 | . |5 6 ! --------------------------- ! | . | . | ! | 1 . | 3 . | ! | . | . | ! | . 2 | . 4 | ! | . | . | ! --------------------------- ! 1 2 3 ! ! ! input parameters: node = first dimensoin of ijk (must be .ge. 3) ! nx = number of nodes ! nelx = number of elemnts ! (x(1:nx), y(1:nx)) = coordinates of nodes ! nodcode(1:nx) = integer code for each node with the ! following meening: ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner point. ! ijk(1:3,1:nelx) = connectivity matrix. for a given element ! number nel, ijk(k,nel), k=1,2,3 represent the nodes ! composing the element nel. ! implicit none integer node integer ijk(node,*) integer ijk1(10) integer ijk2(10) integer ijk3(10) integer k integer nelx integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ) x1(12) real ( kind = 8 ) y(*) real ( kind = 8 ) y1(12) ! ! coordinates of nodal points ! data x1/0.0,1.0,2.0,0.0,1.0,2.0,0.0,1.0,2.0,0.0,1.0,2.0/ data y1/0.0,0.0,0.0,1.0,1.0,1.0,2.0,2.0,2.0,3.0,3.0,3.0/ ! !------------------|--|--|--|--|--|--|---|---|---| ! elements 1 2 3 4 5 6 7 8 9 10 !------------------|--|--|--|--|--|--|---|---|---| data ijk1 /1, 1, 2, 2, 4, 4, 7, 7, 8, 8/ data ijk2 /5, 2, 6, 3, 8, 5, 11, 8, 12, 9/ data ijk3 /4, 5, 5, 6, 7, 8, 10, 11,11, 12/ nx = 12 do k = 1, nx x(k) = x1(k) y(k) = y1(k) nodcode(k) = 1 end do nodcode(3) = 2 nodcode(10) = 2 nodcode(9) = 2 nelx = 10 do k = 1, nelx ijk(1,k) = ijk1(k) ijk(2,k) = ijk2(k) ijk(3,k) = ijk3(k) end do return end subroutine fgrid4 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID4: initial grid for a C-shaped region composed of 10 elements -- ! 10 11 ! +------------------+ . ! | . | . ! | . 8 | . 12 ! | . | 9 . | ! | 7 . | . | ! 7 | . | . 10 | ! -------------------+--------+ 9 ! | .| 8 ! | 5 . | ! | . | ! | . 6 | ! |. | 5 6 ! 4 +------------------+--------+ ! | . | . 4 | ! | 1 . | . | ! | . | 3 .| 3 ! | . 2 | . ! | . | . ! -------------------- ! 1 2 ! ! input parameters: node = first dimensoin of ijk (must be .ge. 3) ! nx = number of nodes ! nelx = number of elemnts ! (x(1:nx), y(1:nx)) = coordinates of nodes ! nodcode(1:nx) = integer code for each node with the ! following meening: ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner point. ! ijk(1:3,1:nelx) = connectivity matrix. for a given element ! number nel, ijk(k,nel), k=1,2,3 represent the nodes ! composing the element nel. ! implicit none integer node integer ijk(node,*) integer ijk1(10) integer ijk2(10) integer ijk3(10) integer k integer nelx integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ) x1(12) real ( kind = 8 ) y(*) real ( kind = 8 ) y1(12) ! ! coordinates of nodal points ! data x1/0.0,1.0,1.5,0.0,1.0,1.5,0.0,1.0,1.5,0.0,1.0,1.5/ data y1/0.0,0.0,0.5,1.0,1.0,1.0,2.0,2.0,2.0,3.0,3.0,2.5/ ! !------------------|--|--|--|--|--|--|---|---|---| ! elements 1 2 3 4 5 6 7 8 9 10 !------------------|--|--|--|--|--|--|---|---|---| data ijk1 /1, 1, 2, 5, 4, 4, 7, 10, 8, 8/ data ijk2 /5, 2, 3, 3, 8, 5, 8, 8, 12, 9/ data ijk3 /4, 5, 5, 6, 7, 8, 10, 11,11, 12/ nx = 12 do k = 1, nx x(k) = x1(k) y(k) = y1(k) nodcode(k) = 1 end do nodcode(6) = 2 nodcode(9) = 2 nelx = 10 do k = 1, nelx ijk(1,k) = ijk1(k) ijk(2,k) = ijk2(k) ijk(3,k) = ijk3(k) end do return end subroutine fgrid5 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID5: initial grid for a whrench shaped region composed of 14 elements -- ! ! 13 15 ! . ----------. |-3 ! . . 13 . . | ! . 12 . . 14 . | ! 9 10 11 12 . . 14 . 16 | ! ---------------------------------------------------------- |-2 ! | . | . | . | . | | ! | 1 . | 3 . | 5 . | 7 . | | ! | . 2 | . 4 | . 6 | . 8 | | ! |. |. |. | . | | ! ----------------------------------------------------------- |-1 ! 1 2 3 4 . 6 . . 8 | ! . 9 . . 11 . | ! . . 10 . . | ! .___________. |-0 ! 5 7 ! ! 0---------1--------2----------3--------------4-------------5 ! ! input parameters: node = first dimensoin of ijk (must be .ge. 3) ! nx = number of nodes ! nelx = number of elemnts ! (x(1:nx), y(1:nx)) = coordinates of nodes ! nodcode(1:nx) = integer code for each node with the ! following meening: ! nodcode(i) = 0 --> node i is internal ! nodcode(i) = 1 --> node i is a boundary but not a corner point ! nodcode(i) = 2 --> node i is a corner point. ! ijk(1:3,1:nelx) = connectivity matrix. for a given element ! number nel, ijk(k,nel), k=1,2,3 represent the nodes ! composing the element nel. ! implicit none integer node integer ijk(node,*) integer ijk1(14) integer ijk2(14) integer ijk3(14) integer k integer nelx integer nodcode(*) integer nx real ( kind = 8 ) x(*) real ( kind = 8 ) x1(16) real ( kind = 8 ) y(*) real ( kind = 8 ) y1(16) ! ! coordinates of nodal points ! data x1/0.,1.,2.,3.,3.5,4.,4.5,5.,0.,1.,2.,3.,3.5,4.,4.5,5./ data y1/1.,1.,1.,1.,0.,1.,0.,1.,2.,2.,2.,2.,3.,2.,3.,2./ ! !------------------|--|--|--|--|--|--|---|---|---|--|---|---|---| ! elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 !------------------|--|--|--|--|--|--|---|---|---|--|---|---|---| data ijk1 /1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 12, 14, 14/ data ijk2 /10,2,11, 3,12, 4,14, 6, 5, 7, 7, 14, 15, 16/ data ijk3 /9,10,10,11,11,12,12, 14, 6, 6, 8, 13, 13, 15/ nx = 16 do k=1, nx x(k) = x1(k) y(k) = y1(k) nodcode(k) = 1 end do nodcode(9) = 2 nodcode(8) = 2 nodcode(16) = 2 nelx = 14 do k=1,nelx ijk(1,k) = ijk1(k) ijk(2,k) = ijk2(k) ijk(3,k) = ijk3(k) end do return end subroutine fgrid6 (nx,nelx,node,x,y,nodcode,ijk) !*****************************************************************************80 ! !! FGRID6 generates a random finite element grid. ! ! Discussion: ! ! Random coordinates are generated by using the library random number ! generator and then a Delauney triangulation is used to generate the grid. ! ! The algorithm used for the triangulation is coded by Sweby. ! implicit none integer node integer adjlist(200,12) integer i integer i1 integer i2 integer ijk(node,*) integer ijktr(200,3) integer il(6) integer j integer jj integer k integer nadj(200) integer nbr integer nel(200) integer nelx integer nemax integer nod integer nodcode(*) integer nx real ( kind = 8 ) random real ( kind = 8 ) x(*) real ( kind = 8 ) y(*) nx = 20 do j = 1, nx x(j) = random() end do do j = 1, nx y(j) = random() end do nemax = 200 call dlauny ( x, y, nx, ijktr, nemax, nelx ) print *, ' delauny -- nx, nelx ', nx, nelx do j = 1, nx nel(j) = 0 nadj(j) = 0 end do ! ! transpose ijktr into ijk and count the number of ! elemnts to which each node belongs. ! do j = 1, nelx do k = 1, node i = ijktr(j,k) ijk(k,j) = i nel(i) = nel(i)+1 end do end do ! ! Take care of ordering within each element. ! call chkelmt (nx, x, y, nelx, ijk, node) ! ! The next blocks are to determine the nature of each point. ! (interior point, boundary point, corner point. ! ! List and count the neighbors of each node. ! do j = 1, nelx do k=1, node il(k) = ijk(k,j) il(k+node) = il(k) end do ! ! neighbors of node il(k) are il(k+1), il(k+2) ! do k = 1, node nod = il(k) i1 = il(k+1) i2 = il(k+2) ! ! see if already there ! nbr = nadj(nod) do jj = 1, nbr if ( adjlist(nod,nbr) == i1 ) then i1 = 0 end if if ( adjlist(nod,nbr) == i2 ) then i2 = 0 end if end do if ( i1 /= 0 ) then nbr = nbr + 1 adjlist(nod,nbr) = i1 end if if ( i2 /= 0 ) then nbr = nbr + 1 adjlist(nod,nbr) = i2 end if nadj(nod) = nbr end do end do ! ! Boundary info: ! if number of neighbors = number of elemnts to which it belongs then it is ! an internal point ! if not but number of neighnors >= 2 then boundary point ! if nadj(k) = 2 then corner point. ! do j=1, nx nodcode(j) = 0 nbr = nadj(j) if (nel(j) < nbr) then nodcode(j) = 1 end if if ( nbr == 2 ) then nodcode(j) = 2 end if end do return end function random () !*****************************************************************************80 ! !! RANDOM returns a pseudorandom value. ! ! This routine was extracted from ELEFUNT. ! implicit none integer, save :: iy = 100001 real ( kind = 8 ) random iy = iy * 125 iy = iy - ( iy / 2796203 ) * 2796203 random = real ( iy, kind = 8 ) / 2796203.0 return end subroutine xyk ( nel, xyke, x, y, ijk, node ) !*****************************************************************************80 ! !! XYK evaluates the material property matrix function. ! ! Discussion: ! ! In this example, the function is just the identity matrix. ! implicit none integer node integer ijk(node,*) integer nel real ( kind = 8 ) x(*) real ( kind = 8 ) xyke(2,2) real ( kind = 8 ) y(*) xyke(1,1) = 1.0 xyke(2,2) = 1.0 xyke(1,2) = 0.0 xyke(2,1) = 0.0 return end function afun ( x, y, z ) !*****************************************************************************80 ! !! AFUN ! implicit none real ( kind = 8 ) afun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z afun = -1.0D+00 return end function bfun ( x, y, z ) !*****************************************************************************80 ! !! BFUN ! implicit none real ( kind = 8 ) bfun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z bfun = -1.0D+00 return end function cfun ( x, y, z ) !*****************************************************************************80 ! !! CFUN ! implicit none real ( kind = 8 ) cfun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z cfun = -1.0D+00 return end function dfun ( x, y, z ) !*****************************************************************************80 ! !! DFUN ! implicit none real ( kind = 8 ) dfun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z dfun = 0.0D+00 return end function efun ( x, y, z ) !*****************************************************************************80 ! !! EFUN ! implicit none real ( kind = 8 ) efun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z efun = 0.0D+00 return end function ffun ( x, y, z ) !*****************************************************************************80 ! !! FFUN ! implicit none real ( kind = 8 ) ffun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z ffun = 0.0D+00 return end function gfun ( x, y, z ) !*****************************************************************************80 ! !! GFUN ! implicit none real ( kind = 8 ) gfun real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z gfun = 0.0D+00 return end subroutine afunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! AFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do coeff((j-1)*nfree+j) = -1.0D+00 end do return end subroutine bfunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! BFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do coeff((j-1)*nfree+j) = -1.0D+00 end do return end subroutine cfunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! CFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do coeff((j-1)*nfree+j) = -1.0D+00 end do return end subroutine dfunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! DFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do end do return end subroutine efunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! EFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do end do return end subroutine ffunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! FFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do end do return end subroutine gfunbl ( nfree, x, y, z, coeff ) !*****************************************************************************80 ! !! GFUNBL ! implicit none real ( kind = 8 ) coeff(100) integer i integer j integer nfree real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z do j=1, nfree do i=1, nfree coeff((j-1)*nfree+i) = 0.0D+00 end do end do return end