function is_rref ( m, n, A ) !*****************************************************************************80 ! !! is_rref() determines if a matrix is in reduced row echelon format. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 December 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! A(m,n): a matrix. ! ! Output: ! ! is_ref: True if A is in reduced row echelon form. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer m integer n real ( kind = rk8 ) A(m,n) integer c integer i logical is_rref integer j integer p integer r c = 0 do r = 1, m ! ! Increment the first legal column for next pivot. ! c = c + 1 ! ! Search for pivot p in this row. ! If none, set p = n + 1. ! p = n + 1 do j = 1, n if ( A(r,j) /= 0.0 ) then p = j exit end if end do ! ! If p == n + 1, go to next row. ! if ( p == n + 1 ) then cycle end if ! ! If p is too early, fail. ! if ( p < c ) then is_rref = .false. return end if ! ! Accept p as new c. ! c = p ! ! If A(r,c) is not 1, fail ! if ( A(r,c) /= 1.0 ) then is_rref = .false. return end if ! ! If A(r,c) is not the only nonzero in column c, fail ! do i = 1, m if ( i /= r ) then if ( A(i,c) /= 0.0D+00 ) then is_rref = .false. return end if end if end do end do is_rref = .true. return end subroutine rref_compute ( m, n, A, A_RREF, a_cols ) !*****************************************************************************80 ! !! rref_compute() computes the reduced row echelon form of a matrix. ! ! Discussion: ! ! A rectangular matrix is in row reduced echelon form if: ! ! * The leading nonzero entry in each row has the value 1. ! ! * All entries are zero above and below the leading nonzero entry ! in each row. ! ! * The leading nonzero in each row occurs in a column to ! the right of the leading nonzero in the previous row. ! ! * Rows which are entirely zero occur last. ! ! Example: ! ! M = 4, N = 7 ! ! Matrix A: ! ! 1 3 0 2 6 3 1 ! -2 -6 0 -2 -8 3 1 ! 3 9 0 0 6 6 2 ! -1 -3 0 1 0 9 3 ! ! RREF(A): ! ! 1 3 0 0 2 0 0 ! 0 0 0 1 2 0 0 ! 0 0 0 0 0 1 1/3 ! 0 0 0 0 0 0 0 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 December 2024 ! ! Author: ! ! Original Python version by ChatGPT. ! This version by John Burkardt. ! ! Reference: ! ! Charles Cullen, ! An Introduction to Numerical Linear Algebra, ! PWS Publishing Company, 1994, ! ISBN: 978-0534936903, ! LC: QA185.D37.C85. ! ! Input: ! ! integer m, n: the number of rows and columns in the matrix A. ! ! real A(M,N), the matrix to be analyzed. ! ! Output: ! ! real A_RREF(M,N), the reduced row echelon form of the matrix. ! ! integer a_cols(n): the columns for which a pivot entry was found. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer m integer n real ( kind = rk8 ) A(m,n) integer a_cols(n) real ( kind = rk8 ) A_RREF(m,n) integer c integer i integer j integer p real ( kind = rk8 ) pval integer r integer rank real ( kind = rk8 ) temp real ( kind = rk8 ) tol ! ! Work on a copy of the original matrix. ! A_RREF(1:m,1:n) = A(1:m,1:n) ! ! Initialize rank to 0. ! rank = 0 ! ! Initialize indices of independent columns to 0. ! a_cols(1:n) = 0 ! ! Set a tolerance for the size of a pivot value. ! tol = sqrt ( epsilon ( tol ) ) ! ! Start the pivot search in row R = 1. ! r = 1 ! ! Seek a pivot for column C. ! do c = 1, n ! ! Exit if we have run out of rows to examine. ! if ( m < r ) then exit end if ! ! Find row index P of maximum element in subvector A(R:M,C). ! pval = -1.0 p = -1 do i = r, m if ( pval <= abs ( A_RREF(i,c) ) ) then p = i pval = abs ( A_RREF(i,c) ) end if end do ! ! A pivot was not found. A(r:m,c) was all tiny. ! if ( pval <= tol ) then A_RREF(p,c) = 0.0 cycle end if ! ! A pivot was found. ! rank = rank + 1 a_cols(rank) = c ! ! Swap rows R and P. ! do j = c, n temp = A_RREF(r,j) A_RREF(r,j) = A_RREF(p,j) A_RREF(p,j) = temp end do ! ! Normalize row R so that A(r,c) = 1. ! A_RREF(r,c:n) = A_RREF(r,c:n) / A_RREF(r,c) ! ! Eliminate nonzeros in column C using multiples of row R, except for A(R,C). ! do i = 1, m if ( i /= r ) then A_RREF(i,c:n) = A_RREF(i,c:n) - A_RREF(i,c) * A_RREF(r,c:n) end if end do ! ! Move to the next row. ! r = r + 1 end do return end subroutine rref_determinant ( n, A, a_det ) !*****************************************************************************80 ! !! rref_determinant() uses reduced row echelon form (RREF) to compute a determinant. ! ! Discussion: ! ! The procedure will fail if A is not square. ! ! This is simply a demonstration of how the RREF can be used to compute ! the determinant. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer n: the number of rows and columns in the matrix A. ! ! real A(N,N), a square matrix. ! ! Output: ! ! real A_DET: the determinant. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer n real ( kind = rk8 ) A(n,n) integer a_cols(n) real ( kind = rk8 ) a_det real ( kind = rk8 ) A_RREF(n,n) integer i ! ! Do an RREF on A. ! call rref_compute ( n, n, A, A_RREF, a_cols ) ! ! Compute product of diagonal entries. ! a_det = 1.0 do i = 1, n a_det = a_det * A_RREF(i,i) end do return end subroutine rref_inverse ( n, A, A_INV ) !*****************************************************************************80 ! !! rref_inverse() uses reduced row echelon form (RREF) to compute an inverse. ! ! Discussion: ! ! The procedure will fail if A is not square, or not invertible. ! ! This is simply a demonstration of how RREF can be used to compute ! the inverse. But: ! * there are better ways to compute the inverse, including ! B = inv ( A ) ! * the inverse matrix is usually not the appropriate tool for solving ! linear systems. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer n: the number of rows and columns in the matrix A. ! ! real A(N,N), a square, invertible matrix. ! ! Output: ! ! real A_INV(N,N), the inverse of A, computed using the rref_compute(). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer n real ( kind = rk8 ) A(n,n) integer a_cols(n) real ( kind = rk8 ) A_INV(n,n) real ( kind = rk8 ) A_RREF(n,n) real ( kind = rk8 ) AI(n,2*n) real ( kind = rk8 ) AI_RREF(n,2*n) integer ai_cols(2*n) integer i integer j ! ! First do an RREF on A alone. ! The second argument is the independent columns found in the input matrix. ! call rref_compute ( n, n, A, A_RREF, a_cols ) do i = 1, n if ( a_cols(i) == 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'rref_inverse(): Warning!' write ( *, '(a)' ) ' The input matrix seems to be singular.' write ( *, '(a)' ) ' The inverse could not be computed.' stop ( 0 ) end if end do ! ! If A has N independent columns, append the identity and repeat the RREF. ! AI(1:n,1:n) = A(1:n,1:n) do i = 1, n do j = n + 1, 2 * n AI(i,j) = 0.0 end do AI(i,i+n) = 1.0 end do call rref_compute ( n, n + n, AI, AI_RREF, ai_cols ) ! ! The last N columns of AI_RREF are the inverse. ! A_INV = AI_RREF(1:n,n+1:2*n) return end subroutine rref_rank ( m, n, A, a_rank ) !*****************************************************************************80 ! !! rref_rank() returns the rank of a matrix, using the reduced row echelon form. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer m, n: the number of rows and columns in the matrix A. ! ! real A(M,N), the matrix to be analyzed. ! ! Output: ! ! integer A_RANK, the estimated rank of A. ! 0 <= A_RANK <= min ( M, N ). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer m integer n real ( kind = rk8 ) A(m,n) integer a_cols(n) integer a_rank real ( kind = rk8 ) A_RREF(m,n) integer i call rref_compute ( m, n, A, A_RREF, a_cols ) a_rank = 0 do i = 1, n if ( a_cols(i) /= 0 ) then a_rank = a_rank + 1 end if end do return end subroutine rref_solve ( m, n, A, nb, b, x ) !*****************************************************************************80 ! !! rref_solve() uses reduced row echelon form (RREF) to solve a linear system. ! ! Discussion: ! ! A linear system A*x=b is given, where ! A is an MxN1 matrix, possibly singular. ! b is an Mx1 right hand side, or MxN2 collection of right hand sides. ! x is the desired N1x1 solution, or N1xN2 collection of solutions. ! ! The right hand sides are assumed to be consistent, that is, ! each right hand side is assumed to be a linear combination of ! columns of A. If this is not so, the procedure will still produce ! a result x, but it will not satisfy the equation A*x=b. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real A(M,N), a matrix. ! ! real B(M,NB), one or more right hand sides consistent with A. ! ! Output: ! ! real X(N,NB), one or more solution vectors. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer m integer n integer nb real ( kind = rk8 ) A(m,n) real ( kind = rk8 ) AI(m,n+nb) real ( kind = rk8 ) AI_RREF(m,n+nb) integer ai_cols(n+nb) real ( kind = rk8 ) b(m,nb) real ( kind = rk8 ) x(n,nb) AI(1:m,1:n) = A(1:m,1:n) AI(1:m,n+1:n+nb) = b(1:m,1:nb) call rref_compute ( m, n + nb, AI, AI_RREF, ai_cols ) x(1:n,1:nb) = AI_RREF(1:n,n+1:n+nb) return end