function i4_log_10 ( i ) !*****************************************************************************80 ! !! i4_log_10() returns the integer part of the logarithm base 10 of an I4. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number whose logarithm base 10 ! is desired. ! ! Output, integer I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer i integer i_abs integer i4_log_10 integer ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = rk ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer k real ( kind = rk ) r8_uniform_01 integer seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if ! ! Although SEED can be represented exactly as a 32 bit integer, ! it generally cannot be represented exactly as a 32 bit real number! ! r8_uniform_01 = real ( seed, kind = rk ) * 4.656612875D-10 return end subroutine r8but_det ( n, mu, a, det ) !*****************************************************************************80 ! !! R8BUT_DET computes the determinant of an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Output, real ( kind = rk ) DET, the determinant of A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) det det = product ( a(mu+1,1:n) ) return end subroutine r8but_indicator ( n, mu, a ) !*****************************************************************************80 ! !! R8BUT_INDICATOR sets up an R8BUT indicator matrix. ! ! Discussion: ! ! The "indicator matrix" simply has a value like I*10+J at every ! entry of a dense matrix, or at every entry of a compressed storage ! matrix for which storage is allocated. ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! The indicator matrix is stored as: ! ! 0 0 13 24 35 ! 0 12 23 34 45 ! 11 22 33 44 55 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of columns of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Output, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) integer fac integer i integer i4_log_10 integer j fac = 10 ** ( i4_log_10 ( n ) + 1 ) do i = 1, n do j = i, min ( n, i + mu ) a(i-j+mu+1,j) = real ( fac * i + j, kind = rk ) end do end do do i = 1, mu do j = 1, mu+1-i a(i,j) = 0.0D+00 end do end do return end subroutine r8but_mtv ( n, mu, a, x, b ) !*****************************************************************************80 ! !! R8BUT_MTV multiplies an R8VECr by an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product X*A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) b(n) integer i integer ilo real ( kind = rk ) x(n) do i = 1, n ilo = max ( 1, i - mu ) b(i) = sum ( x(ilo:i) * a(ilo-i+mu+1:mu+1,i) ) end do return end subroutine r8but_mv ( n, mu, a, x, b ) !*****************************************************************************80 ! !! R8BUT_MV multiplies an R8BUT matrix by an R8VEC. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) b(n) integer i integer j real ( kind = rk ) x(n) b(1:n) = 0.0D+00 do i = 1, n do j = i, min ( n, i + mu ) b(i) = b(i) + a(i-j+mu+1,j) * x(j) end do end do return end subroutine r8but_print ( n, mu, a, title ) !*****************************************************************************80 ! !! R8BUT_PRINT prints an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) character ( len = * ) title call r8but_print_some ( n, mu, a, 1, 1, n, n, title ) return end subroutine r8but_print_some ( n, mu, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8BUT_PRINT_SOME prints some of an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) aij character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '(a,5a14)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2lo = max ( i2lo, j2lo ) i2hi = min ( ihi, n ) i2hi = min ( i2hi, j2hi + mu ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( i <= j .and. j <= i + mu ) then aij = a(i-j+mu+1,j) write ( ctemp(j2), '(g14.6)' ) aij else ctemp(j2) = ' ' end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8but_random ( n, mu, seed, a ) !*****************************************************************************80 ! !! R8BUT_RANDOM randomizes an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 October 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of columns of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input/output, integer SEED, a seed for the random number ! generator. ! ! Output, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) integer i integer j integer k real ( kind = rk ) r8_uniform_01 integer seed do j = 1, n do i = max ( 1, j - mu ), j k = i - j + mu + 1 a(k,j) = r8_uniform_01 ( seed ) end do end do return end subroutine r8but_sl ( n, mu, a, b ) !*****************************************************************************80 ! !! R8BUT_SL solves A*x=b, where A is an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 October 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input/output, real ( kind = rk ) B(N). ! On input, the right hand side. ! On output, the solution vector. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) b(n) integer j integer jlo do j = n, 1, -1 b(j) = b(j) / a(j-j+mu+1,j) jlo = max ( 1, j - mu ) b(jlo:j-1) = b(jlo:j-1) - a(jlo-j+mu+1:j-1-j+mu+1,j) * b(j) end do return end subroutine r8but_slt ( n, mu, a, b ) !*****************************************************************************80 ! !! R8BUT_SLT solves A'*x=b, where A is an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 October 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Input/output, real ( kind = rk ) B(N). ! On input, the right hand side. ! On output, the solution vector. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) b(n) integer i integer ihi integer j do j = 1, n b(j) = b(j) / a(j-j+mu+1,j) ihi = min ( n, j + mu ) do i = j + 1, ihi b(i) = b(i) - a(j-i+mu+1,i) * b(j) end do end do return end subroutine r8but_to_r8ge ( n, mu, a, b ) !*****************************************************************************80 ! !! R8BUT_TO_R8GE copies an R8BUT matrix to an R8GE matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrices. ! N must be positive. ! ! Input, integer MU, the upper bandwidth of A. ! MU must be nonnegative, and no greater than N-1. ! ! Input, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! ! Output, real ( kind = rk ) B(N,N), the R8GE matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) real ( kind = rk ) b(n,n) integer i integer j do i = 1, n do j = 1, n if ( i <= j .and. j <= i+mu ) then b(i,j) = a(i-j+mu+1,j) else b(i,j) = 0.0D+00 end if end do end do return end subroutine r8but_zeros ( n, mu, a ) !*****************************************************************************80 ! !! R8BUT_ZEROS zeroes an R8BUT matrix. ! ! Discussion: ! ! The R8BUT storage format is used for a banded upper triangular matrix. ! The matrix is assumed to be zero above the MU-th superdiagonal. ! The matrix is stored in an MU+1 by N array. ! Columns are preserved. ! ! The diagonal is stored in row MU+1 of the array. ! The first superdiagonal in row MU, columns 2 through N. ! The second superdiagonal in row MU-1, columns 3 through N. ! The MU-th superdiagonal in row 1, columns MU+1 through N. ! ! Example: ! ! N = 5, MU = 2 ! ! A11 A12 A13 0 0 ! 0 A22 A23 A24 0 ! 0 0 A33 A34 A35 ! 0 0 0 A44 A45 ! 0 0 0 0 A55 ! --- --- ! --- ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of columns of the matrix. ! ! Input, integer MU, the upper bandwidth. ! ! Output, real ( kind = rk ) A(MU+1,N), the R8BUT matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer mu integer n real ( kind = rk ) a(mu+1,n) a(1:mu+1,1:n) = 0.0D+00 return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, real ( kind = rk ) A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i do i = 1, n a(i) = real ( i, kind = rk ) end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end subroutine r8vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of real ( kind = rk ) values. ! ! For now, the input quantity SEED is an integer variable. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer N, the number of entries ! in the vector. ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R(N), the vector of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer k integer seed real ( kind = rk ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if r(i) = real ( seed, kind = rk ) * 4.656612875D-10 end do return end