function i4_log_10 ( i ) !*****************************************************************************80 ! !! i4_log_10() returns the integer part of the logarithm base 10 of an I4. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number whose logarithm base 10 ! is desired. ! ! Output, integer I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer i integer i_abs integer i4_log_10 integer ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = rk ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer k real ( kind = rk ) r8_uniform_01 integer seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if ! ! Although SEED can be represented exactly as a 32 bit integer, ! it generally cannot be represented exactly as a 32 bit real number! ! r8_uniform_01 = real ( seed, kind = rk ) * 4.656612875D-10 return end subroutine r85_dif2 ( n, a ) !*****************************************************************************80 ! !! R85_DIF2 sets up an R85 second difference matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Output, real ( kind = rk ) A(5,N), the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) integer i integer j a(1:5,1:n) = 0.0D+00 do j = 2, n i = j - 1 a(2,j) = - 1.0D+00 end do do j = 1, n i = j a(3,j) = 2.0D+00 end do do j = 1, n - 1 i = j + 1 a(4,j) = - 1.0D+00 end do return end subroutine r85_indicator ( n, a ) !*****************************************************************************80 ! !! R85_INDICATOR sets up an R85 indicator matrix. ! ! Discussion: ! ! The "indicator matrix" simply has a value like I*10+J at every ! entry of a dense matrix, or at every entry of a compressed storage ! matrix for which storage is allocated. ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Here are the values as stored in an indicator matrix: ! ! 00 00 13 24 35 46 ! 00 12 23 34 45 56 ! 11 22 33 44 55 66 ! 21 32 43 54 65 00 ! 31 42 53 64 00 00 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Output, real ( kind = rk ) A(5,N), the indicator matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) integer fac integer i integer i4_log_10 integer j a(1:5,1:n) = 0.0D+00 fac = 10 ** ( i4_log_10 ( n ) + 1 ) do j = 3, n i = j - 2 a(1,j) = real ( fac * i + j, kind = rk ) end do do j = 2, n i = j - 1 a(2,j) = real ( fac * i + j, kind = rk ) end do do j = 1, n i = j a(3,j) = real ( fac * i + j, kind = rk ) end do do j = 1, n - 1 i = j + 1 a(4,j) = real ( fac * i + j, kind = rk ) end do do j = 1, n - 2 i = j + 2 a(5,j) = real ( fac * i + j, kind = rk ) end do return end subroutine r85_np_fs ( n, a, b, x ) !*****************************************************************************80 ! !! R85_NP_FS factors and solves an R85 linear system. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! The factorization algorithm requires that each diagonal entry be nonzero. ! ! No pivoting is performed, and therefore the algorithm may fail ! in simple cases where the matrix is not singular. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2003 ! ! Author: ! ! Original FORTRAN77 version by Ward Cheney, David Kincaid. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Ward Cheney, David Kincaid, ! Numerical Mathematics and Computing, ! Brooks-Cole Publishing, 2004, ! ISBN: 0534201121. ! ! Parameters: ! ! Input, integer N, the order of the linear system. ! ! Input/output, real ( kind = rk ) A(5,N), ! On input, the pentadiagonal matrix. ! On output, the data has been overwritten by factorization information. ! ! Input/output, real ( kind = rk ) B(N). ! On input, B contains the right hand side of the linear system. ! On output, B has been overwritten by factorization information. ! ! Output, real ( kind = rk ) X(N), the solution of the linear system. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) real ( kind = rk ) b(n) integer i real ( kind = rk ) x(n) real ( kind = rk ) xmult do i = 1, n if ( a(3,i) == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R85_NP_FS - Fatal error!' write ( *, '(a,i8,a)' ) ' A(3,', i, ') = 0.' stop 1 end if end do do i = 2, n - 1 xmult = a(2,i) / a(3,i-1) a(3,i) = a(3,i) - xmult * a(4,i-1) a(4,i) = a(4,i) - xmult * a(5,i-1) b(i) = b(i) - xmult * b(i-1) xmult = a(1,i+1) / a(3,i-1) a(2,i+1) = a(2,i+1) - xmult * a(4,i-1) a(3,i+1) = a(3,i+1) - xmult * a(5,i-1) b(i+1) = b(i+1) - xmult * b(i-1) end do xmult = a(2,n) / a(3,n-1) a(3,n) = a(3,n) - xmult * a(4,n-1) x(n) = ( b(n) - xmult * b(n-1) ) / a(3,n) x(n-1) = ( b(n-1) - a(4,n-1) * x(n) ) / a(3,n-1) do i = n - 2, 1, -1 x(i) = ( b(i) - a(4,i) * x(i+1) - a(5,i) * x(i+2) ) / a(3,i) end do return end subroutine r85_mtv ( n, a, x, b ) !*****************************************************************************80 ! !! R85_MTV multiplies an R8VEC by an R85 matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the linear system. ! ! Input, real ( kind = rk ) A(5,N), the matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A'. ! ! Output, real ( kind = rk ) B(N), the product A' * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) real ( kind = rk ) b(n) real ( kind = rk ) x(n) b(1:n) = a(3,1:n) * x(1:n) b(2:n) = b(2:n) + a(4,1:n-1) * x(1:n-1) b(3:n) = b(3:n) + a(5,1:n-2) * x(1:n-2) b(1:n-1) = b(1:n-1) + a(2,2:n) * x(2:n) b(1:n-2) = b(1:n-2) + a(1,3:n) * x(3:n) return end subroutine r85_mv ( n, a, x, b ) !*****************************************************************************80 ! !! R85_MV multiplies an R85 matrix by an R8VEC. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the linear system. ! ! Input, real ( kind = rk ) A(5,N), the matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) real ( kind = rk ) b(n) real ( kind = rk ) x(n) b(1:n) = a(3,1:n) * x(1:n) b(3:n) = b(3:n) + a(1,3:n) * x(1:n-2) b(2:n) = b(2:n) + a(2,2:n) * x(1:n-1) b(1:n-1) = b(1:n-1) + a(4,1:n-1) * x(2:n) b(1:n-2) = b(1:n-2) + a(5,1:n-2) * x(3:n) return end subroutine r85_print ( n, a, title ) !*****************************************************************************80 ! !! R85_PRINT prints an R85 matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(5,N), the matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) character ( len = * ) title call r85_print_some ( n, a, 1, 1, n, n, title ) return end subroutine r85_print_some ( n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R85_PRINT_SOME prints some of an R85 matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(5,N), the matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column, to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer n real ( kind = rk ) a(5,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2lo = max ( i2lo, j2lo - 2 ) i2hi = min ( ihi, n ) i2hi = min ( i2hi, j2hi + 2 ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( 2 < i - j .or. 2 < j - i ) then ctemp(j2) = ' ' else if ( j == i + 2 ) then write ( ctemp(j2), '(g14.6)' ) a(1,j) else if ( j == i + 1 ) then write ( ctemp(j2), '(g14.6)' ) a(2,j) else if ( j == i ) then write ( ctemp(j2), '(g14.6)' ) a(3,j) else if ( j == i - 1 ) then write ( ctemp(j2), '(g14.6)' ) a(4,j) else if ( j == i - 2 ) then write ( ctemp(j2), '(g14.6)' ) a(5,j) end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r85_random ( n, seed, a ) !*****************************************************************************80 ! !! R85_RANDOM randomizes an R85 matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 June 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the linear system. ! ! Input/output, integer SEED, a seed for the random ! number generator. ! ! Output, real ( kind = rk ) A(5,N), the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) real ( kind = rk ) r8_uniform_01 integer j integer seed a(1:5,1:n) = 0.0D+00 do j = 3, n a(1,j) = r8_uniform_01 ( seed ) end do do j = 2, n a(2,j) = r8_uniform_01 ( seed ) end do do j = 1, n a(3,j) = r8_uniform_01 ( seed ) end do do j = 1, n - 1 a(4,j) = r8_uniform_01 ( seed ) end do do j = 1, n - 2 a(5,j) = r8_uniform_01 ( seed ) end do return end subroutine r85_to_r8ge ( n, a, b ) !*****************************************************************************80 ! !! R85_TO_R8GE copies an R85 matrix into an R8GE matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(5,N), the R85 matrix. ! ! Output, real ( kind = rk ) A(N,N), the R8GE matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) real ( kind = rk ) b(n,n) integer i integer j b(1:n,1:n) = 0.0D+00 do i = 1, n do j = 1, n if ( j == i - 2 ) then b(i,j) = a(1,i) else if ( j == i - 1 ) then b(i,j) = a(2,i) else if ( i == j ) then b(i,j) = a(3,i) else if ( j == i + 1 ) then b(i,j) = a(4,i) else if ( j == i + 2 ) then b(i,j) = a(5,i) end if end do end do return end subroutine r85_zeros ( n, a ) !*****************************************************************************80 ! !! R85_ZEROS zeroes an R85 matrix. ! ! Discussion: ! ! The R85 storage format represents a pentadiagonal matrix as a 5 ! by N array, in which each row corresponds to a diagonal, and ! column locations are preserved. Thus, the original matrix is ! "collapsed" vertically into the array. ! ! Example: ! ! Here is how an R85 matrix of order 6 would be stored: ! ! * * A13 A24 A35 A46 ! * A12 A23 A34 A45 A56 ! A11 A22 A33 A44 A55 A66 ! A21 A32 A43 A54 A65 * ! A31 A42 A53 A64 * * ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the linear system. ! ! Output, real ( kind = rk ) A(5,N), the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(5,n) a(1:5,1:n) = 0.0D+00 return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, real ( kind = rk ) A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i do i = 1, n a(i) = real ( i, kind = rk ) end do return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end