09 May 2025 9:29:08.018 PM r83s_test(): FORTRAN90 version: Test r83s(). R83S_CG_TEST R83S_CG applies the conjugate gradient method to solve a linear system with an R83S matrix. Number of variables N = 10 Norm of residual ||Ax-b|| = 0.272401E-14 Norm of error ||x1-x2|| = 0.921465E-15 R83S_DIF2_TEST R83S_DIF2 sets an R83S matrix to the second difference. We check three cases, MN. Second difference in R83S format: Col: 1 2 3 4 5 Row --- 1 2.00000 -1.00000 2 -1.00000 2.00000 -1.00000 3 -1.00000 2.00000 -1.00000 Second difference in R83S format: Col: 1 2 3 4 5 Row --- 1 2.00000 -1.00000 2 -1.00000 2.00000 -1.00000 3 -1.00000 2.00000 -1.00000 4 -1.00000 2.00000 -1.00000 5 -1.00000 2.00000 Second difference in R83S format: Col: 1 2 3 Row --- 1 2.00000 -1.00000 2 -1.00000 2.00000 -1.00000 3 -1.00000 2.00000 4 -1.00000 R83S_GS_SL_TEST R83S_GS_SL solves a linear system using Gauss-Seidel iteration, with R83S matrix storage. Matrix order N = 10 Iterations per call = 25 Number of iterations taken = 25 Maximum solution change on last step = 0.940568E-01 Current solution estimate: 1 0.634606 2 1.32650 3 2.09566 4 2.95451 5 3.90741 6 4.95088 7 6.07442 8 7.26190 9 8.49330 10 9.74665 Number of iterations taken = 25 Maximum solution change on last step = 0.119209E-01 Current solution estimate: 1 0.953567 2 1.91450 3 2.88533 4 3.86757 5 4.86173 6 5.86733 7 6.88302 8 7.90675 9 8.93599 10 9.96800 Number of iterations taken = 25 Maximum solution change on last step = 0.150800E-02 Current solution estimate: 1 0.994126 2 1.98918 3 2.98549 4 3.98325 5 4.98251 6 5.98322 7 6.98520 8 7.98820 9 8.99190 10 9.99595 R83S_INDICATOR_TEST R83S_INDICATOR sets an R83S matrix to an indicator matrix. We check three cases, MN. R83S indicator matrix: Col: 1 2 3 4 5 Row --- 1 2.00000 3.00000 2 1.00000 2.00000 3.00000 3 1.00000 2.00000 3.00000 R83S indicator matrix: Col: 1 2 3 4 5 Row --- 1 2.00000 3.00000 2 1.00000 2.00000 3.00000 3 1.00000 2.00000 3.00000 4 1.00000 2.00000 3.00000 5 1.00000 2.00000 R83S indicator matrix: Col: 1 2 3 Row --- 1 2.00000 3.00000 2 1.00000 2.00000 3.00000 3 1.00000 2.00000 4 1.00000 R83S_JAC_SL_TEST R83S_JAC_SL solves a linear system using Jacobi iteration, with R83S matrix storage. Matrix order N = 10 Iterations per call = 25 Number of iterations taken = 25 Maximum solution change on last step = 0.211497 Current solution estimate: 1 0.315171 2 0.727797 3 1.14042 4 1.82758 5 2.51474 6 3.59047 7 4.66620 8 6.12820 9 7.59020 10 9.29510 Number of iterations taken = 25 Maximum solution change on last step = 0.734674E-01 Current solution estimate: 1 0.757545 2 1.51509 3 2.34936 4 3.18363 5 4.14729 6 5.11094 7 6.21581 8 7.32068 9 8.53366 10 9.74665 Number of iterations taken = 25 Maximum solution change on last step = 0.261536E-01 Current solution estimate: 1 0.910021 2 1.83432 3 2.75863 4 3.72124 5 4.68386 6 5.69666 7 6.70946 8 7.76839 9 8.82731 10 9.91366 R83S_MTV_TEST R83S_MTV computes b=A'*x, where A is an R83S matrix. We check three cases, MN. Product comparison: 1 0.320440 0.320440 2 0.674426 0.674426 3 0.824906 0.824906 4 0.253262 0.253262 5 0.00000 0.00000 Product comparison: 1 1.40048 1.40048 2 3.26227 3.26227 3 5.12406 5.12406 4 6.98586 6.98586 5 6.14983 6.14983 Product comparison: 1 0.781053 0.781053 2 2.07808 2.07808 3 3.37510 3.37510 R83S_MV_TEST R83S_MV computes b=A*x, where A is an R83S matrix. We check three cases, MN. Product comparison: 1 1.94496 1.94496 2 3.38165 3.38165 3 4.81833 4.81833 Product comparison: 1 1.85309 1.85309 2 3.86785 3.86785 3 5.88261 5.88261 4 7.89737 7.89737 5 4.95071 4.95071 Product comparison: 1 1.93263 1.93263 2 2.95971 2.95971 3 0.353377 0.353377 4 0.839688E-02 0.839688E-02 5 0.00000 0.00000 R83S_PRINT_TEST R83S_PRINT prints an R83S matrix. R83S indicator matrix: Col: 1 2 3 4 Row --- 1 2.00000 3.00000 2 1.00000 2.00000 3.00000 3 1.00000 2.00000 3.00000 4 1.00000 2.00000 5 1.00000 R83S_PRINT_SOME_TEST R83S_PRINT_SOME prints some of an R83S matrix. Rows 2-5, Cols 2-4: Col: 2 3 4 Row --- 2 2.00000 3.00000 3 1.00000 2.00000 3.00000 4 1.00000 2.00000 5 1.00000 R83S_RANDOM_TEST R83S_RANDOM randomizes an R83S matrix. R83S matrix: Col: 1 2 3 4 Row --- 1 0.749650 0.684543E-01 2 0.895154E-01 0.749650 0.684543E-01 3 0.895154E-01 0.749650 0.684543E-01 4 0.895154E-01 0.749650 5 0.895154E-01 R83S_RES_TEST R83S_RES computes b-A*x, where A is an R83S matrix. We check three cases, MN. Residual A*x-b: 1 0.00000 2 0.00000 3 0.00000 Residual A*x-b: 1 0.00000 2 0.00000 3 0.00000 4 0.00000 5 0.00000 Residual A*x-b: 1 0.00000 2 0.00000 3 0.00000 4 0.00000 5 0.00000 R83S_TO_R8GE_TEST R83S_TO_R8GE converts an R83S matrix to R8GE format. R83S matrix: Col: 1 2 3 4 Row --- 1 0.840828 0.959272E-01 2 0.328248 0.840828 0.959272E-01 3 0.328248 0.840828 0.959272E-01 4 0.328248 0.840828 5 0.328248 R8GE matrix: Col: 1 2 3 4 Row --- 1 0.840828 0.959272E-01 0.00000 0.00000 2 0.328248 0.840828 0.959272E-01 0.00000 3 0.00000 0.328248 0.840828 0.959272E-01 4 0.00000 0.00000 0.328248 0.840828 5 0.00000 0.00000 0.00000 0.328248 R83S_ZEROS_TEST R83S_ZEROS zeros an R83S matrix. R83S matrix: Col: 1 2 3 4 Row --- 1 0.00000 0.00000 2 0.00000 0.00000 0.00000 3 0.00000 0.00000 0.00000 4 0.00000 0.00000 5 0.00000 r83s_test(): Normal end of execution. 09 May 2025 9:29:08.018 PM