function i4_log_10 ( i ) !*****************************************************************************80 ! !! i4_log_10() returns the integer part of the logarithm base 10 of an I4. ! ! Example: ! ! I I4_LOG_10 ! ----- -------- ! 0 0 ! 1 0 ! 2 0 ! 9 0 ! 10 1 ! 11 1 ! 99 1 ! 100 2 ! 101 2 ! 999 2 ! 1000 3 ! 1001 3 ! 9999 3 ! 10000 4 ! ! Discussion: ! ! I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 June 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer I, the number whose logarithm base 10 ! is desired. ! ! Output, integer I4_LOG_10, the integer part of the ! logarithm base 10 of the absolute value of X. ! implicit none integer i integer i_abs integer i4_log_10 integer ten_pow if ( i == 0 ) then i4_log_10 = 0 else i4_log_10 = 0 ten_pow = 10 i_abs = abs ( i ) do while ( ten_pow <= i_abs ) i4_log_10 = i4_log_10 + 1 ten_pow = ten_pow * 10 end do end if return end function r8_uniform_01 ( seed ) !*****************************************************************************80 ! !! R8_UNIFORM_01 returns a unit pseudorandom R8. ! ! Discussion: ! ! An R8 is a real ( kind = rk ) value. ! ! For now, the input quantity SEED is an integer variable. ! ! This routine implements the recursion ! ! seed = 16807 * seed mod ( 2^31 - 1 ) ! r8_uniform_01 = seed / ( 2^31 - 1 ) ! ! The integer arithmetic never requires more than 32 bits, ! including a sign bit. ! ! If the initial seed is 12345, then the first three computations are ! ! Input Output R8_UNIFORM_01 ! SEED SEED ! ! 12345 207482415 0.096616 ! 207482415 1790989824 0.833995 ! 1790989824 2035175616 0.947702 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R8_UNIFORM_01, a new pseudorandom variate, ! strictly between 0 and 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer k real ( kind = rk ) r8_uniform_01 integer seed if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if ! ! Although SEED can be represented exactly as a 32 bit integer, ! it generally cannot be represented exactly as a 32 bit real number! ! r8_uniform_01 = real ( seed, kind = rk ) * 4.656612875D-10 return end subroutine r83s_cg ( n, a, b, x ) !*****************************************************************************80 ! !! R83S_CG uses the conjugate gradient method on an R83S system. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! The matrix A must be a positive definite symmetric band matrix. ! ! The method is designed to reach the solution after N computational ! steps. However, roundoff may introduce unacceptably large errors for ! some problems. In such a case, calling the routine again, using ! the computed solution as the new starting estimate, should improve ! the results. ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 July 2014 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Beckman, ! The Solution of Linear Equations by the Conjugate Gradient Method, ! in Mathematical Methods for Digital Computers, ! edited by John Ralston, Herbert Wilf, ! Wiley, 1967, ! ISBN: 0471706892, ! LC: QA76.5.R3. ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the matrix. ! ! Input, real ( kind = rk ) B(N), the right hand side vector. ! ! Input/output, real ( kind = rk ) X(N). ! On input, an estimate for the solution, which may be 0. ! On output, the approximate solution vector. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(3) real ( kind = rk ) alpha real ( kind = rk ) ap(n) real ( kind = rk ) b(n) real ( kind = rk ) beta integer it real ( kind = rk ) p(n) real ( kind = rk ) pap real ( kind = rk ) pr real ( kind = rk ) r(n) real ( kind = rk ) rap real ( kind = rk ) x(n) ! ! Initialize ! AP = A * x, ! R = b - A * x, ! P = b - A * x. ! call r83s_mv ( n, n, a, x, ap ) r(1:n) = b(1:n) - ap(1:n) p(1:n) = b(1:n) - ap(1:n) ! ! Do the N steps of the conjugate gradient method. ! do it = 1, n ! ! Compute the matrix*vector product AP=A*P. ! call r83s_mv ( n, n, a, p, ap ) ! ! Compute the dot products ! PAP = P*AP, ! PR = P*R ! Set ! ALPHA = PR / PAP. ! pap = dot_product ( p, ap ) pr = dot_product ( p, r ) if ( pap == 0.0D+00 ) then return end if alpha = pr / pap ! ! Set ! X = X + ALPHA * P ! R = R - ALPHA * AP. ! x(1:n) = x(1:n) + alpha * p(1:n) r(1:n) = r(1:n) - alpha * ap(1:n) ! ! Compute the vector dot product ! RAP = R*AP ! Set ! BETA = - RAP / PAP. ! rap = dot_product ( r, ap ) beta = - rap / pap ! ! Update the perturbation vector ! P = R + BETA * P. ! p(1:n) = r(1:n) + beta * p(1:n) end do return end subroutine r83s_dif2 ( m, n, a ) !*****************************************************************************80 ! !! R83S_DIF2 returns the DIF2 matrix in R83S format. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Properties: ! ! A is banded, with bandwidth 3. ! A is tridiagonal. ! Because A is tridiagonal, it has property A (bipartite). ! A is a special case of the TRIS or tridiagonal scalar matrix. ! A is integral, therefore det ( A ) is integral, and ! det ( A ) * inverse ( A ) is integral. ! A is Toeplitz: constant along diagonals. ! A is symmetric: A' = A. ! Because A is symmetric, it is normal. ! Because A is normal, it is diagonalizable. ! A is persymmetric: A(I,J) = A(N+1-J,N+1-I). ! A is positive definite. ! A is an M matrix. ! A is weakly diagonally dominant, but not strictly diagonally dominant. ! A has an LU factorization A = L * U, without pivoting. ! The matrix L is lower bidiagonal with subdiagonal elements: ! L(I+1,I) = -I/(I+1) ! The matrix U is upper bidiagonal, with diagonal elements ! U(I,I) = (I+1)/I ! and superdiagonal elements which are all -1. ! A has a Cholesky factorization A = L * L', with L lower bidiagonal. ! L(I,I) = sqrt ( (I+1) / I ) ! L(I,I-1) = -sqrt ( (I-1) / I ) ! The eigenvalues are ! LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) ! = 4 SIN^2(I*PI/(2*N+2)) ! The corresponding eigenvector X(I) has entries ! X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). ! Simple linear systems: ! x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) ! x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) ! det ( A ) = N + 1. ! The value of the determinant can be seen by induction, ! and expanding the determinant across the first row: ! det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) ! = 2 * N - (N-1) ! = N + 1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 July 2014 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Gregory, David Karney, ! A Collection of Matrices for Testing Computational Algorithms, ! Wiley, 1969, ! ISBN: 0882756494, ! LC: QA263.68 ! ! Morris Newman, John Todd, ! Example A8, ! The evaluation of matrix inversion programs, ! Journal of the Society for Industrial and Applied Mathematics, ! Volume 6, Number 4, pages 466-476, 1958. ! ! John Todd, ! Basic Numerical Mathematics, ! Volume 2: Numerical Algebra, ! Birkhauser, 1980, ! ISBN: 0817608117, ! LC: QA297.T58. ! ! Joan Westlake, ! A Handbook of Numerical Matrix Inversion and Solution of ! Linear Equations, ! John Wiley, 1968, ! ISBN13: 978-0471936756, ! LC: QA263.W47. ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Output, real ( kind = rk ) A(3), the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(3) integer m integer n a(1) = -1.0D+00 a(2) = 2.0D+00 a(3) = -1.0D+00 return end subroutine r83s_gs_sl ( n, a, b, x, tol, it_max, it, diff ) !*****************************************************************************80 ! !! R83S_GS_SL solves an R83S system using Gauss-Seidel iteration. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! This routine simply applies a given number of steps of the ! iteration to an input approximate solution. On first call, you can ! simply pass in the zero vector as an approximate solution. If ! the returned value is not acceptable, you may call again, using ! it as the starting point for additional iterations. ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, real ( kind = rk ) B(N), the right hand side of the linear system. ! ! Input/output, real ( kind = rk ) X(N), an approximate solution to ! the system. ! ! Input, real ( kind = rk ) TOL, a tolerance. If the maximum change in ! the solution is less than TOL, the iteration is terminated early. ! ! Input, integer IT_MAX, the maximum number of iterations. ! ! Output, integer IT, the number of iterations taken. ! ! Output, real ( kind = rk ) DIFF, the maximum change in the solution ! on the last iteration. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(3) real ( kind = rk ) b(n) real ( kind = rk ) diff integer i integer it integer it_max integer it_num real ( kind = rk ) tol real ( kind = rk ) x(n) real ( kind = rk ) x_norm real ( kind = rk ) x_old(n) ! ! No diagonal matrix entry can be zero. ! if ( a(2) == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R83S_GS_SL - Fatal error!' write ( *, '(a,i8)' ) ' Zero diagonal entry.' stop 1 end if do it_num = 1, it_max it = it_num x_old(1:n) = x(1:n) x(1) = ( b(1) - a(3) * x(2) ) / a(2) do i = 2, n - 1 x(i) = ( b(i) - a(1) * x(i-1) - a(3) * x(i+1) ) / a(2) end do x(n) = ( b(n) - a(1) * x(n-1) ) / a(2) x_norm = maxval ( abs ( x(1:n) ) ) diff = maxval ( abs ( x(1:n) - x_old(1:n) ) ) if ( diff <= tol * ( x_norm + 1.0D+00 ) ) then exit end if end do return end subroutine r83s_indicator ( m, n, a ) !*****************************************************************************80 ! !! R83S_INDICATOR sets an R83S indicator matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Output, real ( kind = rk ) A(3), the R83S matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(3) integer m integer n a(1) = 3.0D+00 a(2) = 2.0D+00 a(3) = 1.0D+00 return end subroutine r83s_jac_sl ( n, a, b, x, tol, it_max, it, diff ) !*****************************************************************************80 ! !! R83S_JAC_SL solves an R83S system using Jacobi iteration. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! This routine simply applies a given number of steps of the ! iteration to an input approximate solution. On first call, you can ! simply pass in the zero vector as an approximate solution. If ! the returned value is not acceptable, you may call again, using ! it as the starting point for additional iterations. ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, real ( kind = rk ) B(N), the right hand side of the linear system. ! ! Input/output, real ( kind = rk ) X(N), an approximate solution ! to the system. ! ! Input, real ( kind = rk ) TOL, a tolerance. If the maximum change in ! the solution is less than TOL, the iteration is terminated early. ! ! Input, integer IT_MAX, the maximum number of iterations. ! ! Output, integer IT, the number of iterations taken. ! ! Output, real ( kind = rk ) DIFF, the maximum change in the solution ! on the last iteration. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(3) real ( kind = rk ) b(n) real ( kind = rk ) diff integer i integer it integer it_max integer it_num real ( kind = rk ) tol real ( kind = rk ) x(n) real ( kind = rk ) x_new(n) real ( kind = rk ) x_norm ! ! No diagonal matrix entry can be zero. ! if ( a(2) == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R83S_JAC_SL - Fatal error!' write ( *, '(a,i8)' ) ' Zero diagonal entry.' stop 1 end if do it_num = 1, it_max it = it_num x_new(1) = b(1) - a(3) * x(2) do i = 2, n - 1 x_new(i) = b(i) - a(1) * x(i-1) - a(3) * x(i+1) end do x_new(n) = b(n) - a(1) * x(n-1) ! ! Divide by diagonal terms. ! x_new(1:n) = x_new(1:n) / a(2) ! ! Measure norms of solution and change: ! x_norm = maxval ( abs ( x(1:n) ) ) diff = maxval ( abs ( x_new(1:n) - x(1:n) ) ) ! ! Update. ! x(1:n) = x_new(1:n) ! ! Test for early termination. ! if ( diff <= tol * ( x_norm + 1.0D+00 ) ) then exit end if end do return end subroutine r83s_mtv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R83S_MTV computes b=A'*x, where A is an R83S matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, real ( kind = rk ) X(M), the vector to be multiplied by A'. ! ! Output, real ( kind = rk ) B(N), the product A' * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(3) real ( kind = rk ) b(n) integer i integer j real ( kind = rk ) x(m) b(1:n) = 0.0D+00 do j = 1, n do i = max ( 1, j - 1 ), min ( m, j + 1 ) b(j) = b(j) + a(i-j+2) * x(i) end do end do return end subroutine r83s_mv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R83S_MV multiplies an R83S matrix times an R8VEC. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(M), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(3) real ( kind = rk ) b(m) integer i integer j real ( kind = rk ) x(n) b(1:m) = 0.0D+00 do j = 1, n do i = max ( 1, j - 1 ), min ( m, j + 1 ) b(i) = b(i) + a(i-j+2) * x(j) end do end do return end subroutine r83s_print ( m, n, a, title ) !*****************************************************************************80 ! !! R83S_PRINT prints an R83S matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(3) integer m integer n character ( len = * ) title call r83s_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r83s_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R83S_PRINT_SOME prints some of an R83S matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the R83S matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column, to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 real ( kind = rk ) a(3) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo integer m integer n character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '(a,5a14)' ) ' Col: ', ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2lo = max ( i2lo, j2lo - 1 ) i2hi = min ( ihi, m ) i2hi = min ( i2hi, j2hi + 1 ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 if ( i - j + 2 < 1 .or. 3 < i - j + 2 ) then ctemp(j2) = ' ' else write ( ctemp(j2), '(g14.6)' ) a(i-j+2) end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r83s_random ( m, n, seed, a ) !*****************************************************************************80 ! !! R83S_RANDOM randomizes an R83S matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the linear system. ! ! Input/output, integer SEED, a seed for the random ! number generator. ! ! Output, real ( kind = rk ) A(3), the R83S matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(3) integer m integer n integer seed call r8vec_uniform_01 ( 3, seed, a ) return end subroutine r83s_res ( m, n, a, x, b, r ) !*****************************************************************************80 ! !! R83S_RES computes the residual R = B-A*X for R83S matrices. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(3), the matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Input, real ( kind = rk ) B(M), the desired result A * x. ! ! Output, real ( kind = rk ) R(M), the residual R = B - A * X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(3) real ( kind = rk ) b(m) real ( kind = rk ) r(m) real ( kind = rk ) x(n) call r83s_mv ( m, n, a, x, r ) r(1:m) = b(1:m) - r(1:m) return end subroutine r83s_to_r8ge ( m, n, a_83s, a_ge ) !*****************************************************************************80 ! !! R83S_TO_R8GE copies an R83S matrix to an R8GE matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A_83S(3), the R83S matrix. ! ! Output, real ( kind = rk ) A_GE(M,N), the R8GE matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a_83s(3) real ( kind = rk ) a_ge(m,n) integer i integer j a_ge(1:m,1:n) = 0.0D+00 do j = 1, n do i = max ( 1, j - 1 ), min ( m, j + 1 ) a_ge(i,j) = a_83s(i-j+2) end do end do return end subroutine r83s_zeros ( m, n, a ) !*****************************************************************************80 ! !! R83S_ZEROS zeros an R83S matrix. ! ! Discussion: ! ! The R83S storage format is used for a tridiagonal scalar matrix. ! The vector A(3) contains the subdiagonal, diagonal, and superdiagonal ! values that occur on every row. ! RGE A(I,J) = R83S A(I-J+2). ! ! Example: ! ! Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would ! be interpreted: ! ! A2 A1 0 0 0 ! A3 A2 A1 0 0 ! 0 A3 A2 A1 0 ! 0 0 A3 A2 A1 ! 0 0 0 A3 A2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 September 2015 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Output, real ( kind = rk ) A(3), the R83S matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(3) integer m integer n a(1:3) = 0.0D+00 return end subroutine r8ge_mtv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R8GE_MTV multiplies an R8VEC by an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, real ( kind = rk ) X(M), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(N), the product A' * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) real ( kind = rk ) b(n) real ( kind = rk ) x(m) b(1:n) = matmul ( transpose ( a(1:m,1:n) ), x(1:m) ) return end subroutine r8ge_mv ( m, n, a, x, b ) !*****************************************************************************80 ! !! R8GE_MV multiplies an R8GE matrix by an R8VEC. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, real ( kind = rk ) X(N), the vector to be multiplied by A. ! ! Output, real ( kind = rk ) B(M), the product A * x. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) real ( kind = rk ) b(m) real ( kind = rk ) x(n) b(1:m) = matmul ( a(1:m,1:n), x(1:n) ) return end subroutine r8ge_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8GE_PRINT prints an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8ge_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8ge_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8GE_PRINT_SOME prints some of an R8GE matrix. ! ! Discussion: ! ! The R8GE storage format is used for a general M by N matrix. A storage ! space is made for each entry. The two dimensional logical ! array can be thought of as a vector of M*N entries, starting with ! the M entries in the column 1, then the M entries in column 2 ! and so on. Considered as a vector, the entry A(I,J) is then stored ! in vector location I+(J-1)*M. ! ! R8GE storage is used by LINPACK and LAPACK. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 March 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows of the matrix. ! M must be positive. ! ! Input, integer N, the number of columns of the matrix. ! N must be positive. ! ! Input, real ( kind = rk ) A(M,N), the R8GE matrix. ! ! Input, integer ILO, JLO, IHI, JHI, the first row and ! column, and the last row and column to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) ! ! Print the columns of the matrix, in strips of 5. ! do j2lo = jlo, jhi, incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)' ) j end do write ( *, '('' Col: '',5a14)' ) ( ctemp(j2), j2 = 1, inc ) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ---' ! ! Determine the range of the rows in this strip. ! i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi ! ! Print out (up to) 5 entries in row I, that lie in the current strip. ! do j2 = 1, inc j = j2lo - 1 + j2 write ( ctemp(j2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j2), j2 = 1, inc ) end do end do return end subroutine r8vec_indicator1 ( n, a ) !*****************************************************************************80 ! !! R8VEC_INDICATOR1 sets an R8VEC to the indicator1 vector. ! ! Discussion: ! ! A(1:N) = (/ 1 : N /) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 September 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Output, real ( kind = rk ) A(N), the array to be initialized. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i do i = 1, n a(i) = real ( i, kind = rk ) end do return end function r8vec_norm ( n, a ) !*****************************************************************************80 ! !! R8VEC_NORM returns the L2 norm of an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! The vector L2 norm is defined as: ! ! R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in A. ! ! Input, real ( kind = rk ) A(N), the vector whose L2 norm is desired. ! ! Output, real ( kind = rk ) R8VEC_NORM, the L2 norm of A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) r8vec_norm r8vec_norm = sqrt ( sum ( a(1:n)**2 ) ) return end function r8vec_norm_affine ( n, v0, v1 ) !*****************************************************************************80 ! !! R8VEC_NORM_AFFINE returns the affine norm of an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! The affine vector L2 norm is defined as: ! ! R8VEC_NORM_AFFINE(V0,V1) ! = sqrt ( sum ( 1 <= I <= N ) ( V1(I) - V0(I) )^2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the order of the vectors. ! ! Input, real ( kind = rk ) V0(N), the base vector. ! ! Input, real ( kind = rk ) V1(N), the vector whose affine norm is desired. ! ! Output, real ( kind = rk ) R8VEC_NORM_AFFINE, the L2 norm of V1-V0. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) r8vec_norm_affine real ( kind = rk ) v0(n) real ( kind = rk ) v1(n) r8vec_norm_affine = sqrt ( sum ( ( v0(1:n) - v1(1:n) )**2 ) ) return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end subroutine r8vec_uniform_01 ( n, seed, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of real ( kind = rk ) values. ! ! For now, the input quantity SEED is an integer variable. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer N, the number of entries ! in the vector. ! ! Input/output, integer SEED, the "seed" value, ! which should NOT be 0. On output, SEED has been updated. ! ! Output, real ( kind = rk ) R(N), the vector of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i integer k integer seed real ( kind = rk ) r(n) if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop 1 end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + 2147483647 end if r(i) = real ( seed, kind = rk ) * 4.656612875D-10 end do return end subroutine r8vec2_print ( n, a1, a2, title ) !*****************************************************************************80 ! !! R8VEC2_PRINT prints an R8VEC2. ! ! Discussion: ! ! An R8VEC2 is a dataset consisting of N pairs of R8's, stored ! as two separate vectors A1 and A2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A1(N), A2(N), the vectors to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a1(n) real ( kind = rk ) a2(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i4,2x,g14.6,2x,g14.6)' ) i, a1(i), a2(i) end do return end