09 May 2025 9:28:52.081 PM qr_solve_test(): FORTRAN90 version Test qr_solve(). QR_SOLVE needs the R8LIB library. This test also needs the TEST_LS library. normal_solve_test(): normal_solve() is a function with a simple interface which solves a linear system A*x = b in the least squares sense. Compare a tabulated solution X1 to the NORMAL_SOLVE result X2. NORMAL_SOLVE cannot be applied when N < M, or if the matrix does not have full column rank. Number of problems = 6 Index M N ||B|| ||X1 - X2|| ||X1|| ||X2|| ||R1|| ||R2|| 1 5 3 6.205 0.2861E-07 5.461 5.461 1.075 1.075 2 6 3 537.6 0.5416E-04 194.8 194.8 5.222 5.222 3 5 3 40.37 ------------ 10.84 ------------ 0.5477E-06 ------------ 4 3 5 232.1 ------------ 7.416 ------------ 0.000 ------------ 5 10 10 1.000 ------------ 0.1534E+08 ------------ 0.2261E-09 ------------ 6 10 10 1.000 0.4990E-15 1.000 1.000 0.4988E-15 0.8696E-16 QR_SOLVE_TEST QR_SOLVE is a function with a simple interface which solves a linear system A*x = b in the least squares sense. Compare a tabulated solution X1 to the QR_SOLVE result X2. Number of problems = 6 Index M N ||B|| ||X1 - X2|| ||X1|| ||X2|| ||R1|| ||R2|| 1 5 3 6.205 0.2861E-07 5.461 5.461 1.075 1.075 2 6 3 537.6 0.5416E-04 194.8 194.8 5.222 5.222 3 5 3 40.37 26.68 10.84 28.80 0.5477E-06 0.4936E-13 4 3 5 232.1 10.37 7.416 12.75 0.000 0.1097E-12 5 10 10 1.000 2182. 0.1534E+08 0.1534E+08 0.2261E-09 0.6014E-09 6 10 10 1.000 0.5752E-15 1.000 1.000 0.4988E-15 0.4190E-15 SVD_SOLVE_TEST SVD_SOLVE is a function with a simple interface which solves a linear system A*x = b in the least squares sense. Compare a tabulated solution X1 to the SVD_SOLVE result X2. Number of problems = 6 Index M N ||B|| ||X1 - X2|| ||X1|| ||X2|| ||R1|| ||R2|| 1 5 3 6.205 0.2861E-07 5.461 5.461 1.075 1.075 2 6 3 537.6 0.5416E-04 194.8 194.8 5.222 5.222 3 5 3 40.37 0.5092E-07 10.84 10.84 0.5477E-06 0.4082E-13 4 3 5 232.1 0.1565E-12 7.416 7.416 0.000 0.1045E-12 5 10 10 1.000 1731. 0.1534E+08 0.1534E+08 0.2261E-09 0.4856E-09 6 10 10 1.000 0.1133E-14 1.000 1.000 0.4988E-15 0.1063E-14 DQRLS_TEST DQRLS solves a linear system A*x = b in the least squares sense. Coefficient matrix A: Col 1 2 3 Row 1: 1.00000 1.00000 1.00000 2: 1.00000 2.00000 4.00000 3: 1.00000 3.00000 9.00000 4: 1.00000 4.00000 16.0000 5: 1.00000 5.00000 25.0000 Right hand side b: 1: 1.0000000 2: 2.3000000 3: 4.6000000 4: 3.1000000 5: 1.2000000 Error code = 0 Estimated matrix rank = 3 Least squares solution x: 1: -3.0200000 2: 4.4914286 3: -0.72857143 Residuals A*x-b 1: 0.25714286 2: -0.74857143 3: 0.70285714 4: -0.18857143 5: -0.22857143E-01 qr_solve_test(): Normal end of execution. 09 May 2025 9:28:52.082 PM