9 May 2025 9:24:54.445 PM NINTLIB_TEST FORTRAN90 version Test the NINTLIB library. TESTND Test routines for estimating the integral of of F(X) in the hypercube [A,B]^DIM_NUM. DIM_NUM = 2 A(1:DIM_NUM) = 0.00000000000 B(1:DIM_NUM) = 1.00000000000 F(X(1:DIM_NUM)) = 1 BOX_ND: 1.00000000000 25 P5_ND: 1.00000000000 9 ROMBERG_ND: 1.00000000000 500 SAMPLE_ND: 1.00000000000 120 P5_ND+: 1.00000000000 9 P5_ND+: 1.00000000000 36 P5_ND+: 1.00000000000 144 P5_ND+: 1.00000000000 576 P5_ND+: 1.00000000000 2304 P5_ND+: 1.00000000000 9216 MONTE_CARLO_ND: 1.00000000000 80000 MONTE_CARLO_ND: 1.00000000000 640000 MONTE_CARLO_ND: 1.00000000000 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM) ) BOX_ND: 1.00000000000 25 P5_ND: 1.00000000000 9 ROMBERG_ND: 1.00000000000 500 SAMPLE_ND: 1.00000000000 120 P5_ND+: 1.00000000000 9 P5_ND+: 1.00000000000 36 P5_ND+: 1.00000000000 144 P5_ND+: 1.00000000000 576 P5_ND+: 1.00000000000 2304 P5_ND+: 1.00000000000 9216 MONTE_CARLO_ND: 1.00055509112 80000 MONTE_CARLO_ND: 0.999563215500 640000 MONTE_CARLO_ND: 1.00021559459 5120000 F(X(1:DIM_NUM)) = sum( X(1:DIM_NUM)^2 ) BOX_ND: 0.666666666667 25 P5_ND: 0.666666666667 9 ROMBERG_ND: 0.666666666667 1400 SAMPLE_ND: 0.665987531604 120 P5_ND+: 0.666666666667 9 P5_ND+: 0.666666666667 36 P5_ND+: 0.666666666667 144 P5_ND+: 0.666666666667 576 P5_ND+: 0.666666666667 2304 P5_ND+: 0.666666666667 9216 MONTE_CARLO_ND: 0.667525124435 80000 MONTE_CARLO_ND: 0.666960314709 640000 MONTE_CARLO_ND: 0.666564369453 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM)^3 ) BOX_ND: 0.500000000000 25 P5_ND: 0.500000000000 9 ROMBERG_ND: 0.500000000000 1400 SAMPLE_ND: 0.499693384220 120 P5_ND+: 0.500000000000 9 P5_ND+: 0.500000000000 36 P5_ND+: 0.500000000000 144 P5_ND+: 0.500000000000 576 P5_ND+: 0.500000000000 2304 P5_ND+: 0.500000000000 9216 MONTE_CARLO_ND: 0.501111430187 80000 MONTE_CARLO_ND: 0.499450329466 640000 MONTE_CARLO_ND: 0.499779751565 5120000 F(X(1:DIM_NUM)) = exp(sum(X(1:DIM_NUM))) BOX_ND: 2.95249244201 25 P5_ND: 2.95248960999 9 ROMBERG_ND: 2.95249213461 500 SAMPLE_ND: 2.94942850067 120 P5_ND+: 2.95248960999 9 P5_ND+: 2.95249239663 36 P5_ND+: 2.95249244130 144 P5_ND+: 2.95249244200 576 P5_ND+: 2.95249244201 2304 P5_ND+: 2.95249244201 9216 MONTE_CARLO_ND: 2.95185303213 80000 MONTE_CARLO_ND: 2.95109144253 640000 MONTE_CARLO_ND: 2.95314947666 5120000 F(X(1:DIM_NUM)) = 1/(1+sum(X(1:DIM_NUM)^2)) BOX_ND: 0.639510304013 25 P5_ND: 0.639380432842 9 ROMBERG_ND: 0.639510327294 500 SAMPLE_ND: 0.639697555310 120 P5_ND+: 0.639380432842 9 P5_ND+: 0.639510041677 36 P5_ND+: 0.639510349723 144 P5_ND+: 0.639510351837 576 P5_ND+: 0.639510351870 2304 P5_ND+: 0.639510351870 9216 MONTE_CARLO_ND: 0.640162084859 80000 MONTE_CARLO_ND: 0.639553712765 640000 MONTE_CARLO_ND: 0.639381572194 5120000 DIM_NUM = 3 A(1:DIM_NUM) = 0.00000000000 B(1:DIM_NUM) = 1.00000000000 F(X(1:DIM_NUM)) = 1 BOX_ND: 1.00000000000 125 P5_ND: 1.00000000000 19 ROMBERG_ND: 1.00000000000 9000 SAMPLE_ND: 1.00000000000 400 MONTE_CARLO_ND: 1.00000000000 80000 MONTE_CARLO_ND: 1.00000000000 640000 MONTE_CARLO_ND: 1.00000000000 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM) ) BOX_ND: 1.50000000000 125 P5_ND: 1.50000000000 19 ROMBERG_ND: 1.50000000000 9000 SAMPLE_ND: 1.50000000000 400 MONTE_CARLO_ND: 1.49849030911 80000 MONTE_CARLO_ND: 1.50007116741 640000 MONTE_CARLO_ND: 1.49995565698 5120000 F(X(1:DIM_NUM)) = sum( X(1:DIM_NUM)^2 ) BOX_ND: 1.00000000000 125 P5_ND: 1.00000000000 19 ROMBERG_ND: 1.00000000000 36000 SAMPLE_ND: 1.00022103832 400 MONTE_CARLO_ND: 1.00247773012 80000 MONTE_CARLO_ND: 1.00015097751 640000 MONTE_CARLO_ND: 0.999817027861 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM)^3 ) BOX_ND: 0.750000000000 125 P5_ND: 0.750000000000 19 ROMBERG_ND: 0.750000000000 36000 SAMPLE_ND: 0.750387770055 400 MONTE_CARLO_ND: 0.748684958606 80000 MONTE_CARLO_ND: 0.748688423030 640000 MONTE_CARLO_ND: 0.749832269761 5120000 F(X(1:DIM_NUM)) = exp(sum(X(1:DIM_NUM))) BOX_ND: 5.07321411177 125 P5_ND: 5.07287024374 19 ROMBERG_ND: 5.07321411171 36000 SAMPLE_ND: 5.07225323388 400 MONTE_CARLO_ND: 5.08228517933 80000 MONTE_CARLO_ND: 5.07332861703 640000 MONTE_CARLO_ND: 5.07477724338 5120000 F(X(1:DIM_NUM)) = 1/(1+sum(X(1:DIM_NUM)^2)) BOX_ND: 0.535856697388 125 P5_ND: 0.535741189906 19 ROMBERG_ND: 0.535856704763 9000 SAMPLE_ND: 0.535815750597 400 MONTE_CARLO_ND: 0.536312417582 80000 MONTE_CARLO_ND: 0.535941954219 640000 MONTE_CARLO_ND: 0.535962293619 5120000 DIM_NUM = 4 A(1:DIM_NUM) = 0.00000000000 B(1:DIM_NUM) = 1.00000000000 F(X(1:DIM_NUM)) = 1 BOX_ND: 1.00000000000 625 P5_ND: 1.00000000000 33 ROMBERG_ND: 1.00000000000 170000 SAMPLE_ND: 1.00000000000 1416 MONTE_CARLO_ND: 1.00000000000 80000 MONTE_CARLO_ND: 1.00000000000 640000 MONTE_CARLO_ND: 1.00000000000 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM) ) BOX_ND: 2.00000000000 625 P5_ND: 2.00000000000 33 ROMBERG_ND: 2.00000000000 170000 SAMPLE_ND: 2.00000000000 1416 MONTE_CARLO_ND: 1.99963381498 80000 MONTE_CARLO_ND: 2.00010913154 640000 MONTE_CARLO_ND: 1.99971316632 5120000 F(X(1:DIM_NUM)) = sum( X(1:DIM_NUM)^2 ) BOX_ND: 1.33333333333 625 P5_ND: 1.33333333333 33 ROMBERG_ND: 1.33333333333 980000 SAMPLE_ND: 1.33407478006 1416 MONTE_CARLO_ND: 1.33245074596 80000 MONTE_CARLO_ND: 1.33380465931 640000 MONTE_CARLO_ND: 1.33322119271 5120000 F(X(1:DIM_NUM)) = sum ( X(1:DIM_NUM)^3 ) BOX_ND: 1.00000000000 625 P5_ND: 1.00000000000 33 ROMBERG_ND: 1.00000000000 980000 SAMPLE_ND: 1.00009382136 1416 MONTE_CARLO_ND: 1.00297616289 80000 MONTE_CARLO_ND: 1.00047982408 640000 MONTE_CARLO_ND: 0.999869956897 5120000 F(X(1:DIM_NUM)) = exp(sum(X(1:DIM_NUM))) BOX_ND: 8.71721162013 625 P5_ND: 8.71495185352 33 ROMBERG_ND: 8.71721161990 980000 SAMPLE_ND: 8.72000061799 1416 MONTE_CARLO_ND: 8.71122741773 80000 MONTE_CARLO_ND: 8.72275675859 640000 MONTE_CARLO_ND: 8.71740427334 5120000 F(X(1:DIM_NUM)) = 1/(1+sum(X(1:DIM_NUM)^2)) BOX_ND: 0.459360474862 625 P5_ND: 0.459299029954 33 ROMBERG_ND: 0.459360450369 170000 SAMPLE_ND: 0.459211867082 1416 MONTE_CARLO_ND: 0.458850110071 80000 MONTE_CARLO_ND: 0.459358758386 640000 MONTE_CARLO_ND: 0.459520559907 5120000 NINTLIB_TEST Normal end of execution. 9 May 2025 9:24:57.806 PM