program main !*****************************************************************************80 ! !! mxm() computes a matrix-matrix product and reports the elapsed CPU time. ! ! Discussion: ! ! The multiplication carried out is ! ! A(1:N1,1:N3) = B(1:N1,1:N2) * C(1:N2,1:N3) ! ! where B and C are real double precision matrices whose entries ! are assigned randomly. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Usage: ! ! mxm n1 n2 n3 ! ! Parameters: ! ! Command line argument, integer N1, N2, N3, defines the number of ! rows and columns in the two matrices. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), allocatable :: a(:,:) integer arg_num real ( kind = rk ), allocatable :: b(:,:) real ( kind = rk ), allocatable :: c(:,:) real ( kind = rk ) cpu_seconds integer flop_count integer iarg integer iargc integer ierror integer last real ( kind = rk ) mflops integer n1 integer n2 integer n3 integer seed character ( len = 255 ) string real ( kind = rk ) time_estimate call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MXM:' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Compute matrix-matrix product A = B * C' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! Get N1. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, string ) call s_to_i4 ( string, n1, ierror, last ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Enter N1, the number of rows in B.' read ( *, * ) n1 end if ! ! Get N2. ! if ( 2 <= arg_num ) then iarg = 2 call getarg ( iarg, string ) call s_to_i4 ( string, n2, ierror, last ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Enter N2, the number of columns in B and rows in C.' read ( *, * ) n2 end if ! ! Get N3. ! if ( 3 <= arg_num ) then iarg = 3 call getarg ( iarg, string ) call s_to_i4 ( string, n3, ierror, last ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Enter N3, the number of columns in C.' read ( *, * ) n3 end if ! ! Record the amount of work. ! Each of the N1 * N3 entries of A requires N2 multiplies and N2 adds. ! flop_count = 2 * n1 * n2 * n3 write ( *, '(a)' ) ' ' write ( *, '(a,i6,a,i6)' ) ' Matrix B is ', n1, ' by ', n2 write ( *, '(a,i6,a,i6)' ) ' Matrix C is ', n2, ' by ', n3 write ( *, '(a,i6,a,i6)' ) ' Matrix A will be ', n1, ' by ', n3 write ( *, '(a)' ) ' ' write ( *, '(a,i12)' ) ' Number of floating point operations = ', flop_count time_estimate = real ( flop_count, kind = rk ) / 2.6E+09 write ( *, '(a,g10.2,a)' ) & ' Estimated CPU time is ', time_estimate, ' seconds.' ! ! Generate A, B, C. ! allocate ( a(1:n1,1:n3) ) allocate ( b(1:n1,1:n2) ) allocate ( c(1:n2,1:n3) ) ! ! Set B and C. ! seed = 1325 call matgen ( n1, n2, seed, b ) call matgen ( n2, n3, seed, c ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Method Cpu Seconds MegaFlopS' write ( *, '(a)' ) ' ------ -------------- --------------' ! ! IJK ! a(1:n1,1:n3) = 0.0D+00 call mxm_ijk ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'IJK ', cpu_seconds, mflops ! ! IKJ ! a(1:n1,1:n3) = 0.0D+00 call mxm_ikj ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'IKJ ', cpu_seconds, mflops ! ! JIK ! a(1:n1,1:n3) = 0.0D+00 call mxm_jik ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'JIK ', cpu_seconds, mflops ! ! JKI ! a(1:n1,1:n3) = 0.0D+00 call mxm_jki ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'JKI ', cpu_seconds, mflops ! ! KIJ ! a(1:n1,1:n3) = 0.0D+00 call mxm_kij ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'KIJ ', cpu_seconds, mflops ! ! KJI ! a(1:n1,1:n3) = 0.0D+00 call mxm_kji ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'KJI ', cpu_seconds, mflops ! ! MATMUL ! call mxm_matmul ( n1, n2, n3, a, b, c, cpu_seconds ) if ( 0.0D+00 < cpu_seconds ) then mflops = real ( flop_count, kind = rk ) / cpu_seconds / 1000000.0D+00 else mflops = -1.0D+00 end if write ( *, '(2x,a6,2x,g14.6,2x,g14.6)' ) 'MATMUL', cpu_seconds, mflops ! ! Deallocate arrays. ! deallocate ( a ) deallocate ( b ) deallocate ( c ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MXM:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine matgen ( m, n, seed, a ) !*****************************************************************************80 ! !! matgen() generates a random matrix. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 April 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns ! of the matrix. ! ! Input, integer SEED, a seed for the random number ! generator. ! ! Output, real ( kind = rk ) A(M,N), the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) integer i integer j integer seed ! ! Set the matrix A. ! do j = 1, n do i = 1, m seed = mod ( ( 3125 * seed ), 65536 ) a(i,j) = ( seed - 32768.0 ) / 16384.0 end do end do return end subroutine mxm_ijk ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_ijk() computes A = B * C using DO I, DO J, DO K loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do i = 1, n1 do j = 1, n3 do k = 1, n2 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_ikj ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_ikj() computes A = B * C using DO I, DO K, DO J loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do i = 1, n1 do k = 1, n2 do j = 1, n3 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_jik ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_jik() computes A = B * C using DO J, DO I, DO K loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do j = 1, n3 do i = 1, n1 do k = 1, n2 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_jki ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_jki() computes A = B * C using DO J, DO K, DO I loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do j = 1, n3 do k = 1, n2 do i = 1, n1 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_kij ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_kij() computes A = B * C using DO K, DO I, DO J loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do k = 1, n2 do i = 1, n1 do j = 1, n3 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_kji ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_kji() computes A = B * C using DO K, DO J, DO I loops. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Output, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds integer i integer j integer k real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) do k = 1, n2 do j = 1, n3 do i = 1, n1 a(i,j) = a(i,j) + b(i,k) * c(k,j) end do end do end do call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine mxm_matmul ( n1, n2, n3, a, b, c, cpu_seconds ) !*****************************************************************************80 ! !! mxm_matmul() computes A = B * C, using the FORTRAN90 MATMUL function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 May 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N1, N2, N3, define the orders of the ! matrices. ! ! Input, real ( kind = rk ) A(N1,N3), the result matrix. ! ! Input, real ( kind = rk ) B(N1,N2), C(N2,N3), the factor matrices. ! ! Output, real ( kind = rk ) CPU_SECONDS, the elapsed CPU time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 integer n3 real ( kind = rk ) a(n1,n3) real ( kind = rk ) b(n1,n2) real ( kind = rk ) c(n2,n3) real ( kind = rk ) cpu_seconds real ( kind = rk ) time1 real ( kind = rk ) time2 call cpu_time ( time1 ) a(1:n1,1:n3) = matmul ( b(1:n1,1:n2), c(1:n2,1:n3) ) call cpu_time ( time2 ) cpu_seconds = time2 - time1 return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! s_to_i4() reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer IVAL, the integer value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer LENGTH, the number of characters of S ! used to make IVAL. ! implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end