28 March 2023 1:57:30.478 PM line_felippa_rule_test(): FORTRAN90 version Test the LINE_FELIPPA_RULE library. LINE_MONOMIAL_TEST For a line segment in 1D, LINE_MONOMIAL returns the exact value of the integral of X^ALPHA Volume = 1.00000 ALPHA INTEGRAL 0 1.00000 1 0.500000 2 0.333333 3 0.250000 4 0.200000 LINE_QUAD_TEST For a line segment in 1D, we approximate monomial integrals with: LINE_UNIT_O01, a 1 point rule. LINE_UNIT_O02, a 2 point rule. LINE_UNIT_O03, a 3 point rule. LINE_UNIT_O04, a 4 point rule. LINE_UNIT_O05, a 5 point rule. Monomial exponent: 0 1 1.00000 2 1.00000 3 1.00000 4 1.00000 5 1.00000 Exact 1.00000 Monomial exponent: 1 1 0.500000 2 0.500000 3 0.500000 4 0.500000 5 0.500000 Exact 0.500000 Monomial exponent: 2 1 0.250000 2 0.333333 3 0.333333 4 0.333333 5 0.333333 Exact 0.333333 Monomial exponent: 3 1 0.125000 2 0.250000 3 0.250000 4 0.250000 5 0.250000 Exact 0.250000 Monomial exponent: 4 1 0.625000E-01 2 0.194444 3 0.200000 4 0.200000 5 0.200000 Exact 0.200000 Monomial exponent: 5 1 0.312500E-01 2 0.152778 3 0.166667 4 0.166667 5 0.166667 Exact 0.166667 Monomial exponent: 6 1 0.156250E-01 2 0.120370 3 0.142500 4 0.142857 5 0.142857 Exact 0.142857 Monomial exponent: 7 1 0.781250E-02 2 0.949074E-01 3 0.123750 4 0.125000 5 0.125000 Exact 0.125000 Monomial exponent: 8 1 0.390625E-02 2 0.748457E-01 3 0.108458 4 0.111088 5 0.111111 Exact 0.111111 Monomial exponent: 9 1 0.195312E-02 2 0.590278E-01 3 0.955625E-01 4 0.998980E-01 5 0.100000 Exact 0.100000 Monomial exponent: 10 1 0.976562E-03 2 0.465535E-01 3 0.844563E-01 4 0.906414E-01 5 0.909077E-01 Exact 0.909091E-01 Monomial exponent: 11 1 0.488281E-03 2 0.367155E-01 3 0.747698E-01 4 0.827964E-01 5 0.833255E-01 Exact 0.833333E-01 line_felippa_rule_test(): Normal end of execution. 28 March 2023 1:57:30.478 PM