program main !*****************************************************************************80 ! !! lagrange_approx_1d_test() tests lagrange_approx_1d(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m_test_num = 7 integer, parameter :: nd_test_num = 3 integer j integer k integer m integer, dimension ( m_test_num) :: m_test = (/ & 0, 1, 2, 3, 4, 8, 16 /) integer nd integer, dimension ( nd_test_num) :: nd_test = (/ & 16, 64, 1000 /) integer prob integer prob_num call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'lagrange_approx_1d_test():' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test LAGRANGE_APPROX_1D().' write ( *, '(a)' ) ' The R8LIB library is needed.' write ( *, '(a)' ) ' The QR_SOLVE library is needed.' write ( *, '(a)' ) ' These tests need the TEST_INTERP_1D library.' call p00_prob_num ( prob_num ) do prob = 1, prob_num do j = 1, m_test_num m = m_test(j) do k = 1, nd_test_num nd = nd_test(k) call test02 ( prob, m, nd ) end do end do end do do prob = 1, prob_num do j = 1, m_test_num m = m_test(j) do k = 1, nd_test_num nd = nd_test(k) call test03 ( prob, m, nd ) end do end do end do ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'LAGRANGE_APPROX_1D_TEST:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop 0 end subroutine test02 ( prob, m, nd ) !*****************************************************************************80 ! !! TEST02 tests LAGRANGE_APPROX_1D with evenly spaced data ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROB, the problem index. ! ! Input, integer M, the polynomial approximant degree. ! ! Input, integer ND, the number of data points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) int_error integer m integer nd integer ni integer prob real ( kind = rk ) r8vec_norm_affine real ( kind = rk ), allocatable :: xd(:) real ( kind = rk ), allocatable :: xi(:) real ( kind = rk ), allocatable :: yd(:) real ( kind = rk ), allocatable :: yi(:) write ( *, '(a)' ) '' write ( *, '(a)' ) 'TEST02:' write ( *, '(a,i4)' ) & ' Approximate evenly spaced data from TEST_INTERP_1D problem #', prob write ( *, '(a,i4)' ) ' Use polynomial approximant of degree ', m write ( *, '(a,i4)' ) ' Number of data points = ', nd a = 0.0D+00 b = 1.0D+00 allocate ( xd(1:nd) ) call r8vec_linspace ( nd, a, b, xd ) allocate ( yd(1:nd) ) call p00_f ( prob, nd, xd, yd ) if ( nd < 10 ) then call r8vec2_print ( nd, xd, yd, ' Data array:' ) end if ! ! #1: Does approximant come close to function at data points? ! ni = nd allocate ( xi(1:ni) ) allocate ( yi(1:ni) ) xi(1:ni) = xd(1:ni) call lagrange_approx_1d ( m, nd, xd, yd, ni, xi, yi ) int_error = r8vec_norm_affine ( nd, yi, yd ) / real ( ni, kind = rk ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) & ' L2 approximation error averaged per data node = ', int_error deallocate ( xd ) deallocate ( xi ) deallocate ( yd ) deallocate ( yi ) return end subroutine test03 ( prob, m, nd ) !*****************************************************************************80 ! !! TEST03() tests LAGRANGE_APPROX_1D with Chebyshev spaced data. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2012 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer PROB, the problem index. ! ! Input, integer M, the polynomial approximant degree. ! ! Input, integer ND, the number of data points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) int_error integer m integer nd integer ni integer prob real ( kind = rk ) r8vec_norm_affine real ( kind = rk ), allocatable :: xd(:) real ( kind = rk ), allocatable :: xi(:) real ( kind = rk ), allocatable :: yd(:) real ( kind = rk ), allocatable :: yi(:) write ( *, '(a)' ) '' write ( *, '(a)' ) 'TEST03:' write ( *, '(a,i4)' ) ' Approximate Chebyshev-spaced data from TEST_INTERP_1D problem #', prob write ( *, '(a,i4)' ) ' Use polynomial approximant of degree ', m write ( *, '(a,i4)' ) ' Number of data points = ', nd a = 0.0D+00 b = 1.0D+00 allocate ( xd(1:nd) ) call r8vec_cheby_extreme ( nd, a, b, xd ) allocate ( yd(1:nd) ) call p00_f ( prob, nd, xd, yd ) if ( nd < 10 ) then call r8vec2_print ( nd, xd, yd, ' Data array:' ) end if ! ! #1: Does interpolant match function at interpolation points? ! ni = nd allocate ( xi(1:ni) ) allocate ( yi(1:ni) ) xi(1:ni) = xd(1:ni) call lagrange_approx_1d ( m, nd, xd, yd, ni, xi, yi ) int_error = r8vec_norm_affine ( nd, yi, yd ) / real ( ni, kind = rk ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) & ' L2 approximation error averaged per data node = ', int_error deallocate ( xd ) deallocate ( xi ) deallocate ( yd ) deallocate ( yi ) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 August 2021 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end