program main !*****************************************************************************80 ! !! hypersphere_monte_carlo_test() tests hypersphere_monte_carlo(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'hypersphere_monte_carlo_test():' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test hypersphere_monte_carlo().' call test01 ( ) call test02 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HYPERSPHERE_MONTE_CARLO_TEST' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine test01 ( ) !*****************************************************************************80 ! !! TEST01 uses HYPERSPHERE01_SAMPLE to estimate hypersphere integrals in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 3 integer e(m) integer :: e_test(m,7) = reshape ( (/ & 0, 0, 0, & 2, 0, 0, & 0, 2, 0, & 0, 0, 2, & 4, 0, 0, & 2, 2, 0, & 0, 0, 4 /), (/ m, 7 /) ) real ( kind = rk ) hypersphere01_area integer j integer n real ( kind = rk ) result(7) real ( kind = rk ), allocatable :: value(:) real ( kind = rk ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' Use HYPERSPHERE01_SAMPLE to estimate integrals' write ( *, '(a)' ) ' on the surface of the unit hypersphere.' write ( *, '(a)' ) ' ' write ( *, '(a,i2)' ) ' Spatial dimension = ', m write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' N 1 X^2 Y^2 ' // & ' Z^2 X^4 X^2Y^2 Z^4' write ( *, '(a)' ) ' ' n = 1 do while ( n <= 65536 ) allocate ( value(1:n) ) allocate ( x(1:m,1:n) ) call hypersphere01_sample ( m, n, x ) do j = 1, 7 e(1:m) = e_test(1:m,j) call monomial_value ( m, n, e, x, value ) result(j) = hypersphere01_area ( m ) * sum ( value(1:n) ) & / real ( n, kind = rk ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) deallocate ( value ) deallocate ( x ) n = 2 * n end do write ( *, '(a)' ) ' ' do j = 1, 7 e(1:m) = e_test(1:m,j) call hypersphere01_monomial_integral ( m, e, result(j) ) end do write ( *, '(2x,a8,7(2x,g14.6))' ) ' Exact', result(1:7) return end subroutine test02 ( ) !*****************************************************************************80 ! !! TEST02 uses HYPERSPHERE01_SAMPLE to estimate hypersphere integrals in 6D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 6 integer e(m) integer :: e_test(m,7) = reshape ( (/ & 0, 0, 0, 0, 0, 0, & 1, 0, 0, 0, 0, 0, & 0, 2, 0, 0, 0, 0, & 0, 2, 2, 0, 0, 0, & 0, 0, 0, 4, 0, 0, & 2, 0, 0, 0, 2, 2, & 0, 0, 0, 0, 0, 6 /), (/ m, 7 /) ) real ( kind = rk ) hypersphere01_area integer j integer n real ( kind = rk ) result(7) real ( kind = rk ), allocatable :: value(:) real ( kind = rk ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST02' write ( *, '(a)' ) ' Use HYPERSPHERE01_SAMPLE to estimate integrals' write ( *, '(a)' ) ' on the surface of the unit hypersphere.' write ( *, '(a)' ) ' ' write ( *, '(a,i2)' ) ' Spatial dimension = ', m write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' N' // & ' 1 ' // & ' U ' // & ' V^2 ' // & ' V^2W^2' // & ' X^4 ' // & ' Y^2Z^2' // & ' Z^6' write ( *, '(a)' ) ' ' n = 1 do while ( n <= 65536 ) allocate ( value(1:n) ) allocate ( x(1:m,1:n) ) call hypersphere01_sample ( m, n, x ) do j = 1, 7 e(1:m) = e_test(1:m,j) call monomial_value ( m, n, e, x, value ) result(j) = hypersphere01_area ( m ) * sum ( value(1:n) ) & / real ( n, kind = rk ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) deallocate ( value ) deallocate ( x ) n = 2 * n end do write ( *, '(a)' ) ' ' do j = 1, 7 e(1:m) = e_test(1:m,j) call hypersphere01_monomial_integral ( m, e, result(j) ) end do write ( *, '(2x,a8,7(2x,g14.6))' ) ' Exact', result(1:7) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 August 2005 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end