
A NUMERICAL EVALUATOR FOR THE
GENERALIZED HYPERGEOMETRIC SERIES†

WARREN F. PERGER∗, ATUL BHALLA∗∗, AND MARK NARDIN∗∗∗

∗Electrical Engineering Department and Physics Department, Michigan Technological Uni-
versity, Houghton, MI 49931, USA

∗∗Verilink Corporation, 145 Baytech Drive, San Jose, CA 95134, USA

∗∗∗Electrical Engineering Department, University of Michigan, Ann Arbor, MI

†This work supported in part by a grant from the National Science Foundation, CCR-
8823031.

Received: ; in revised form:

Abstract

The generalized hypergeometric series is numerically evaluated using extended
precision subroutines. Cases involving large, complex arguments are shown to be
accurate up to 12 significant figures.

PROGRAM SUMMARY

Title of program: PFQ

Catalogue number:

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
(see application form in this issue)

Licensing provisions: none

Computer for which the program is designed and others on which it has been tested:
Computers: Sun SPARC Station, IBM 4381, IBM RS6000;
Installations: Michigan Technological University;

Operating systems or monitors under which the program has been tested:
Sun OS 4.1.1, 4.1.2; IBM CMS VM/SP HOP 5.0; IBM AIX 3.1.5;

Programming language used in the program: FORTRAN 77

Memory required to execute with typical data: 16 million (8 bit) words

No. of bits in a word: 8

Number of processors: 1

Has the code been vectorised? No.

No. of lines in distributed program, including test data, etc.: 1721

Additional Keywords: special functions, confluent hypergeometric function

2

Nature of physical problem The generalized hypergeometric series is the solution of many
equations occuring in various scientific and engineering disciplines. A couple of examples
are: the radial part of the wavefunction of the hydrogen atom, for bound and continuum
states both non-relativistic and relativistic, and the radial and angular parts of the solution
to the biconical antenna.

Method of solution The generalized hypergeometric series is summed using extended preci-
sion complex arrays.

Restrictions on the complexity of the problem The program is fundamentally limited by
the amount of available memory. A PARAMETER statement sets the variable LENGTH,
which is the maximum size of any of the extended precision arrays (the distributed version
of PFQ has LENGTH=777).

Typical running time The running time may vary widely, on a given machine, depending
on the number of terms required in the summation to achieve convergence. On a Sun
SPARCStation 1, the time required has been observed to be as small as 1 second and as
large as 20 minutes.

Unusual features of the program The program automatically estimates the number of bits
available in the mantissa and sets the number of array positions required accordingly. The
program also scans the input data looking for input parameters that would result in a
division by zero or a finite series. In either case, the program examines the incoming
parameter(s), comparing them against zero, considering the number of bits available in the
mantissa. If a number is close enough to zero to meet this criterion, the program prints a
message to the user and either continues or aborts, depending on the anticipated impact.
The user options include the ability to request a specific number of significant figures in
the result, whether or not to return the result in natural logarithm form, and the ability
to manually or automatically determine the number of array elements to be used in the
extended arithmetic.

3

LONG WRITE-UP

1. Introduction

1.1. Details of Solution

The generalized hypergeometric series pFq[(α)p; (β)q; z] satisfies the differential equation[1]:

{
z

d

dz

(
z

d

dz
+ β1 − 1

) (
z

d

dz
+ β2 − 1

)
· · ·

(
z

d

dz
+ βq − 1

)
− (1)

z

(
z

d

dz
+ α1

) (
z

d

dz
+ α2

)
· · ·

(
z

d

dz
+ αp

)}
pFq[(α)p; (β)q; z] = 0, (2)

where

pFq[(α)p; (β)q; z] = 1 +
α1α2 · · ·αp z

β1β2 · · · βq 1!
+

α1(α1 + 1)α2(α2 + 1) · · ·αp(αp + 1) z2

β1(β1 + 1)β2(β2 + 1) · · · βq(βq + 1) 2!
+ · · ·

=
∞∑

n=0

(α1)n (α2)n · · · (αp)n zn

(β1)n (β2)n · · · (βq)n n!
. (3)

The symbol used in (3), the Pochammer symbol, is defined as:

(α1)n = α1(α1 + 1) · · · (α1 + n− 1). (4)

Consequently, Equation (2) fits a rather broad class of problems which are commonly
encountered in various scientific disciplines. When p=1 and q=1, (3) becomes the confluent
hypergeometric function, which includes Bessel, Coulomb Wave, Laguerre, etc., functions
[2, page 509]. When p=2 and q=1, the 2F1 series (commonly referred to as the Gauss
hypergeometric series) results, which has Chebyshev, Legendre, and Jacobi polynomials as
examples of special cases[2, page 561]. The program described in this paper is a numerical
evaluator of the series of Equation (3) and will converge under the conditions that the series
converges. The only transformation formula employed is the use of the linear transformation
15.3.6 of Abramowitz and Stegun[2] for the case where p=2, q=1, and |z| is approaching
1 from below. Because the program uses arrays to achieve extended precision complex
arithmetic, the size of the partial sum (and therefore the final answer) will depend on
the available memory. However, on an Sun SPARCStation 1 with 28MByte of memory,
convergence was attained for cases involving 60,000 terms.

The method of summing the series using extended precision arrays follows closely the
predecessor to this program, CONHYP, written for the confluent hypergeometric function[3].
Additionally, the tests employed to verify the accuracy of the current program were sim-
ilar to those described by Nardin, et al [4]. Therefore, in this paper, only the significant
differences in the program [3] and the testing procedure [4] will be described.

4

2. Program Structure

2.1. Function PFQ

The evaluation of the series in (3) is accomplished by a function call to PFQ, which is
a double precision complex function. The required input is:

1. Double precision complex arrays A and B. These are the arrays containing the pa-
rameters in the numerator and denominator, respectively.

2. Integers IP and IQ. These integers indicate the number of numerator and denominator
terms, respectively (these are p and q in (3)).

3. Double precision complex argument Z.

4. Integer LNPFQ. This integer should be set to “1” if the result from PFQ is to be
returned as the natural logarithm of the series, or “0” if not. The user can generally
set LNPFQ = “0” and change it if required.

5. Integer IX. This integer should be set to “0” if the user desires the program PFQ to
estimate the number of array terms (in A and B) to be used, or an integer greater
than zero specifying the number of integer positions to be used. This input parameter
is especially useful as a means to check the results of a given run. Specifically, if the
user obtains a result for a given set of parameters, then changes IX and re-runs the
evaluator, and if the number of array positions was insufficient, then the two results
will likely differ. The recommended procedure would be to generally set IX = “0”
and then set it to 100 or so for a second run. Note that the LENGTH parameter
currently sets the upper limit on IX to 777, but that can easily be changed (it is a
single PARAMETER statement) and the program recompiled.

6. Integer NSIGFIG. This integer specifies the requested number of significant figures
in the final result. If the user attempts to request more than the number of bits in
the mantissa allows, the program will abort with an appropriate error message. The
recommended value is 10.

2.2. Function BITS

BITS determines the number of significant figures in the mantissa.

2.3. Function HYPER

HYPER screens the incoming parameters looking for incorrect or inappropriate data,
then calls the various subprograms to sum the series in (3).

2.4. Subroutines ARADD, ARSUB, ARMULT, ARYDIV

These subroutines add, subtract, multiply, and divide two double precision arrays, re-
spectively, and return the appropriate result.

5

2.5. Subroutines CMPADD, CMPSUB, CMPMUL

These subroutines add, subtract, and multiply, respectively two double precision com-
plex arrays.

2.6. Subroutines EADD, ESUB, EMULT, EDIV

These subroutines add, subtract, multiply, and divide, respectively, two double preci-
sion complex numbers mantissa and exponent and return the appropriate mantissa and
exponent.

2.7. Subroutines CONV12 and CONV21

These subroutines convert a double precision complex number to the form of a 2x2
array, and vice-versa, respectively.

2.8. Subroutines IPREMAX and FACTOR

These subroutines are used to predict the maximum exponent required in the summation
given in (3). This estimate is then used to set the number of array positions required for
the successful summation of the series.

3. Description of test data

The test data is in the form of a FORTRAN “driver” program which calls PFQ and
compares the result for the case of 1F1. The computer used for this test case was a Sun
SPARCStation 1, running SunOS 4.1.2, with 28MByte of memory. This particular case
ran roughly three times faster using PFQ than Mathematica R©.

This driver program will be given here for completeness:

PROGRAM SAMPLE

COMPLEX*16 P,Q,Z,PFQ,RESULT

INTEGER LNPFQ,IP,IQ,IX,NSIGFIG

DIMENSION P(10),Q(10)

DOUBLE PRECISION AR,AI

*

OPEN (5,FILE=’DATA’,STATUS=’OLD’)

READ (5,*) IP,IQ

DO 1 I=1,IP

READ (5,*) P(I)

WRITE (6,*) ’ P(I)= ’,P(I)

1 CONTINUE

DO 2 I=1,IQ

READ (5,*) Q(I)

WRITE (6,*) ’ Q(I)= ’,Q(I)

6

2 CONTINUE

READ (5,*) Z

WRITE (6,*) ’ Z= ’,Z

READ (5,*) LNPFQ

WRITE (6,*) ’ LNPFQ= ’,LNPFQ

READ (5,*) IX

WRITE (6,*) ’ IX= ’,IX

READ (5,*) NSIGFIG

WRITE (6,*) ’ NSIGFIG= ’,NSIGFIG

RESULT = PFQ(P,Q,IP,IQ,Z,LNPFQ,IX,NSIGFIG)

WRITE (6,300)

WRITE (6,301) RESULT

AR=2.31145634403D-12

AI=-1.96169649635D-11

WRITE (6,302) AR,AI

300 FORMAT (32X,’REAL PART’,16X,’IMAG PART’)

301 FORMAT (1X,’ RESULT FROM PFQ=’,3X,1P,2D25.11)

302 FORMAT (1X,’ EXPECTED RESULT=’,3X,1P,2D25.11)

STOP

END

Acknowledgments

The authors gratefully acknowledge the comments of Dr. Jim Cody which contributed
significantly to the predecessor to this program. We also wish to thank the referee for
pointing out several weaknesses which we have now taken into account and which will
undoubtedly improve the program.

7

References

[1] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cam-
bridge, England, 1966.

[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publi-
cations, New York, 1970.

[3] M. Nardin, W. F. Perger, and A. Bhalla, ACM Trans. Math. Softw. 18 (1992) 345.

[4] M. Nardin, W. F. Perger, and A. Bhalla, J. Comput. Appl. Math. 39 (1992) 193.

8

TEST RUN INPUT

1 1

(-15.0D0,55.0D0)

(20.0D0,25.0d0)

(-100.0D0,200.0D0)

0

0

10

9

TEST RUN OUTPUT

P(I)= (-15.000000000000, 55.000000000000)

Q(I)= (20.000000000000, 25.000000000000)

Z= (-100.000000000000, 200.00000000000)

LNPFQ= 0

IX= 0

NSIGFIG= 12

REAL PART IMAG PART

RESULT FROM PFQ= 2.31145634403D-12 -1.96169649635D-11

EXPECTED RESULT= 2.31145634403D-12 -1.96169649635D-11

10

