program main !*****************************************************************************80 ! !! hankel_cholesky_test() tests hankel_cholesky(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 January 2017 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'hankel_cholesky_test():' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' Test hankel_cholesky().' call hankel_cholesky_upper_test ( ) ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'hankel_cholesky_test():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop 0 end subroutine hankel_cholesky_upper_test ( ) !*****************************************************************************80 ! !! HANKEL_CHOLESKY_UPPER_TEST tests HANKEL_CHOLESKY_UPPER. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 January 2017 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n = 5 integer flag real ( kind = rk ) h(n,n) real ( kind = rk ) hanti(2*n-1) real ( kind = rk ) l(n,n) real ( kind = rk ) lii(n) real ( kind = rk ) liim1(n-1) real ( kind = rk ) r1(n,n) real ( kind = rk ) r2(n,n) write ( *, '(a)' ) '' write ( *, '(a)' ) 'hankel_cholesky_upper_test():' write ( *, '(a)' ) ' hankel_cholesky_upper() is given a Hankel matrix H and' write ( *, '(a)' ) ' computes an upper triangular matrix R such that' write ( *, '(a)' ) ' H = R'' * R' ! ! Get a Hankel matrix that is positive definite. ! call random_number ( harvest = lii(1:n) ) call random_number ( harvest = liim1(1:n-1) ) call hankel_pds_cholesky_lower ( n, lii, liim1, l ) h = matmul ( l, transpose ( l ) ) call r8mat_print ( n, n, h, ' The Hankel matrix H:' ) ! ! Compute R using R8MAT_CHOLESKY_FACTOR_UPPER. ! call r8mat_cholesky_factor_upper ( n, h, r1, flag ) if ( flag /= 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) ' r8mat_cholesky_factor_upper() says H is not positive definite.' else call r8mat_print ( n, n, r1, ' R computed by R8MAT_CHOLESKY_FACTOR_UPPER:' ) end if ! ! Compute R using HANKEL_CHOLESKY. ! hanti(1:n) = h(1:n,1) hanti(n+1:2*n-1) = h(n,2:n) call hankel_cholesky_upper ( n, hanti, r2 ) call r8mat_print ( n, n, r2, ' R computed by HANKEL_CHOLESKY:' ) return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end