program main !*****************************************************************************80 ! !! LINPACK_BENCH_D drives the double precision LINPACK benchmark program. ! ! Modified: ! ! 01 May 2000 ! implicit none integer, parameter :: n = 1000 integer, parameter :: lda = n + 1 real ( kind = 8 ), dimension ( lda, n ) :: a real ( kind = 8 ) a_max real ( kind = 8 ) b(n) real ( kind = 8 ) b_max real ( kind = 8 ), parameter :: cray = 0.056D+00 real ( kind = 8 ) eps integer info integer ipvt(n) real ( kind = 8 ) ops real ( kind = 8 ) resid(n) real ( kind = 8 ) resid_max real ( kind = 8 ) residn real ( kind = 8 ) rhs(n) real t1 real t2 real time(6) real ( kind = 8 ) total real ( kind = 8 ) x(n) ! ! This program was updated on 10/12/92 to correct a ! problem with the random number generator. The previous ! random number generator had a short period and produced ! singular matrices occasionally. ! call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LINPACK_BENCH_D' write ( *, '(a)' ) ' The LINPACK benchmark.' write ( *, '(a)' ) ' Language: FORTRAN90' write ( *, '(a)' ) ' Datatype: Real Double Precision' ops = real ( 2 * n**3, kind = 8 ) / 3.0D+00 & + 2.0D+00 * real ( n**2, kind = 8 ) call d_matgen ( a, lda, n ) a_max = maxval ( maxval ( a(1:n,1:n), dim = 2 ), dim = 1 ) x(1:n) = 1.0D+00 b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) call cpu_time ( t1 ) call dgefa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LINPACK_BENCH_D - Fatal error!' write ( *, '(a)' ) ' The matrix A is apparently singular.' write ( *, '(a)' ) ' Abnormal end of execution.' stop end if call cpu_time ( t2 ) time(1) = t2 - t1 call cpu_time ( t1 ) call dgesl ( a, lda, n, ipvt, b, 0 ) call cpu_time ( t2 ) time(2) = t2 - t1 total = time(1) + time(2) ! ! Compute a residual to verify results. ! call d_matgen ( a, lda, n ) x(1:n) = 1.0D+00 rhs(1:n) = matmul ( a(1:n,1:n), x(1:n) ) resid(1:n) = matmul(a(1:n,1:n), b(1:n) ) - rhs(1:n) resid_max = maxval ( abs ( resid(1:n) ) ) b_max = maxval ( abs ( b(1:n) ) ) eps = epsilon ( eps ) residn = resid_max / ( n * a_max * b_max * eps ) time(3) = real ( total ) time(4) = real ( ops / ( 1.0D+06 * total ) ) time(5) = real ( 2.0D+00 / time(4) ) time(6) = real ( total / cray ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Norm. Resid Resid MACHEP' // & ' X(1) X(N)' write ( *, '(a)' ) ' ' write ( *, '(1p5e16.8)' ) residn, resid_max, eps, b(1), b(n) write ( *, '(a)' ) ' ' write ( *, '(a,i5)' ) ' Times are reported for matrices of order ', n write ( *, '(a,i4)' ) ' with leading array dimension of ', lda write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' Factor Solve Total MFLOPS Unit Ratio' write ( *, '(a)' ) ' ' write ( *, '(6(1pe11.3))' ) time(1:6) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' End of tests -- This version dated 10/12/92.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LINPACK_BENCH_D' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine d_matgen ( a, lda, n ) !*****************************************************************************80 ! !! D_MATGEN generates a random matrix. ! ! Modified: ! ! 01 April 2003 ! ! Parameters: ! ! Output, real ( kind = 8 ) A(LDA,N), the N by N matrix. ! ! Input, integer LDA, the leading dimension of the matrix. ! ! Input, integer N, the order of the matrix. ! implicit none integer lda integer n real ( kind = 8 ) a(lda,n) real ( kind = 8 ) d_random integer i integer init(4) integer j init(1:4) = (/ 1, 2, 3, 1325 /) do j = 1, n do i = 1, n a(i,j) = d_random ( init ) - 0.5D+00 end do end do return end function d_random ( iseed ) !*****************************************************************************80 ! !! D_RANDOM returns a uniformly distributed random number between 0 and 1. ! ! Discussion: ! ! This routine uses a multiplicative congruential method with modulus ! 2**48 and multiplier 33952834046453 (see G.S.Fishman, ! 'Multiplicative congruential random number generators with modulus ! 2**b: an exhaustive analysis for b = 32 and a partial analysis for ! b = 48', Math. Comp. 189, pp 331-344, 1990). ! ! 48-bit integers are stored in 4 integer array elements with 12 bits ! per element. Hence the routine is portable across machines with ! integers of 32 bits or more. ! ! Modified: ! ! 01 May 2000 ! ! Parameters: ! ! Input/output, integer ISEED(4). ! On entry, the seed of the random number generator; the array ! elements must be between 0 and 4095, and ISEED(4) must be odd. ! On exit, the seed is updated. ! ! Output, real ( kind = 8 ) D_RANDOM, the next pseudorandom number. ! implicit none real ( kind = 8 ) d_random integer, parameter :: ipw2 = 4096 integer iseed(4) integer it1 integer it2 integer it3 integer it4 integer, parameter :: m1 = 494 integer, parameter :: m2 = 322 integer, parameter :: m3 = 2508 integer, parameter :: m4 = 2549 real ( kind = 8 ) , parameter :: one = 1.0D+00 real ( kind = 8 ) , parameter :: r = 1.0D+00 / 4096.0D+00 ! ! Multiply the seed by the multiplier modulo 2**48. ! it4 = iseed(4) * m4 it3 = it4 / ipw2 it4 = it4 - ipw2 * it3 it3 = it3 + iseed(3) * m4 + iseed(4) * m3 it2 = it3 / ipw2 it3 = it3 - ipw2 * it2 it2 = it2 + iseed(2) * m4 + iseed(3) * m3 + iseed(4) * m2 it1 = it2 / ipw2 it2 = it2 - ipw2 * it1 it1 = it1 + iseed(1) * m4 + iseed(2) * m3 + iseed(3) * m2 + iseed(4) * m1 it1 = mod ( it1, ipw2 ) ! ! Return updated seed ! iseed(1) = it1 iseed(2) = it2 iseed(3) = it3 iseed(4) = it4 ! ! Convert 48-bit integer to a real number in the interval (0,1) ! d_random = & r * ( real ( it1, kind = 8 ) & + r * ( real ( it2, kind = 8 ) & + r * ( real ( it3, kind = 8 ) & + r * ( real ( it4, kind = 8 ) ) ) ) ) return end subroutine d_swap ( x, y ) !*****************************************************************************80 ! !! D_SWAP swaps two real values. ! ! Modified: ! ! 01 May 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, real ( kind = 8 ) X, Y. On output, the values of X and ! Y have been interchanged. ! implicit none real ( kind = 8 ) x real ( kind = 8 ) y real ( kind = 8 ) z z = x x = y y = z return end subroutine daxpy ( n, sa, x, incx, y, incy ) !*****************************************************************************80 ! !! DAXPY adds a constant times one vector to another. ! ! Modified: ! ! 08 April 1999 ! ! Reference: ! ! Lawson, Hanson, Kincaid, Krogh, ! Basic Linear Algebra Subprograms for Fortran Usage, ! Algorithm 539, ! ACM Transactions on Mathematical Software, ! Volume 5, Number 3, September 1979, pages 308-323. ! ! Dongarra, Moler, Bunch and Stewart, ! LINPACK User's Guide, ! SIAM, (Society for Industrial and Applied Mathematics), ! 3600 University City Science Center, ! Philadelphia, PA, 19104-2688. ! ISBN 0-89871-172-X ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, real SA, the multiplier. ! ! Input, real ( kind = 8 ) X(*), the vector to be scaled and added to Y. ! ! Input, integer INCX, the increment between successive entries of X. ! ! Input/output, real ( kind = 8 ) Y(*), the vector to which a ! multiple of X is to be added. ! ! Input, integer INCY, the increment between successive entries of Y. ! implicit none integer i integer incx integer incy integer ix integer iy integer n real ( kind = 8 ) sa real ( kind = 8 ) x(*) real ( kind = 8 ) y(*) if ( n <= 0 ) then else if ( sa == 0.0D+00 ) then else if ( incx == 1 .and. incy == 1 ) then y(1:n) = y(1:n) + sa * x(1:n) else if ( incx >= 0 ) then ix = 1 else ix = ( - n + 1 ) * incx + 1 end if if ( incy >= 0 ) then iy = 1 else iy = ( - n + 1 ) * incy + 1 end if do i = 1, n y(iy) = y(iy) + sa * x(ix) ix = ix + incx iy = iy + incy end do end if return end subroutine dgefa ( a, lda, n, ipvt, info ) !*****************************************************************************80 ! !! DGEFA factors a real matrix. ! ! Modified: ! ! 07 March 2001 ! ! Reference: ! ! Dongarra, Moler, Bunch and Stewart, ! LINPACK User's Guide, ! SIAM, (Society for Industrial and Applied Mathematics), ! 3600 University City Science Center, ! Philadelphia, PA, 19104-2688. ! ISBN 0-89871-172-X ! ! Parameters: ! ! Input/output, real ( kind = 8 ) A(LDA,N). ! On intput, the matrix to be factored. ! On output, an upper triangular matrix and the multipliers used to obtain ! it. The factorization can be written A=L*U, where L is a product of ! permutation and unit lower triangular matrices, and U is upper triangular. ! ! Input, integer LDA, the leading dimension of A. ! ! Input, integer N, the order of the matrix A. ! ! Output, integer IPVT(N), the pivot indices. ! ! Output, integer INFO, singularity indicator. ! 0, normal value. ! K, if U(K,K) == 0. This is not an error condition for this subroutine, ! but it does indicate that SGESL or SGEDI will divide by zero if called. ! Use RCOND in SGECO for a reliable indication of singularity. ! implicit none integer lda integer n real ( kind = 8 ) a(lda,n) integer info integer ipvt(n) integer idamax integer j integer k integer l real ( kind = 8 ) t ! ! Gaussian elimination with partial pivoting. ! info = 0 do k = 1, n - 1 ! ! Find L = pivot index. ! l = idamax ( n-k+1, a(k,k), 1 ) + k - 1 ipvt(k) = l ! ! Zero pivot implies this column already triangularized. ! if ( a(l,k) == 0.0D+00 ) then info = k cycle end if ! ! Interchange if necessary. ! if ( l /= k ) then call d_swap ( a(l,k), a(k,k) ) end if ! ! Compute multipliers. ! a(k+1:n,k) = - a(k+1:n,k) / a(k,k) ! ! Row elimination with column indexing. ! do j = k+1, n t = a(l,j) if ( l /= k ) then a(l,j) = a(k,j) a(k,j) = t end if call daxpy ( n-k, t, a(k+1,k), 1, a(k+1,j), 1 ) end do end do ipvt(n) = n if ( a(n,n) == 0.0D+00 ) then info = n end if return end subroutine dgesl ( a, lda, n, ipvt, b, job ) !*****************************************************************************80 ! !! DGESL solves a real general linear system A * X = B. ! ! Discussion: ! ! DGESL can solve either of the systems A * X = B or A' * X = B. ! ! The system matrix must have been factored by DGECO or DGEFA. ! ! A division by zero will occur if the input factor contains a ! zero on the diagonal. Technically this indicates singularity ! but it is often caused by improper arguments or improper ! setting of LDA. It will not occur if the subroutines are ! called correctly and if SGECO has set RCOND > 0.0 ! or DGEFA has set INFO == 0. ! ! Modified: ! ! 01 May 2000 ! ! Reference: ! ! Dongarra, Moler, Bunch and Stewart, ! LINPACK User's Guide, ! SIAM, (Society for Industrial and Applied Mathematics), ! 3600 University City Science Center, ! Philadelphia, PA, 19104-2688. ! ISBN 0-89871-172-X ! ! Parameters: ! ! Input, real ( kind = 8 ) A(LDA,N), the output from DGECO or DGEFA. ! ! Input, integer LDA, the leading dimension of A. ! ! Input, integer N, the order of the matrix A. ! ! Input, integer IPVT(N), the pivot vector from DGECO or DGEFA. ! ! Input/output, real ( kind = 8 ) B(N). ! On input, the right hand side vector. ! On output, the solution vector. ! ! Input, integer JOB. ! 0, solve A * X = B; ! nonzero, solve A' * X = B. ! implicit none integer lda integer n real ( kind = 8 ) a(lda,n) real ( kind = 8 ) b(n) integer ipvt(n) integer job integer k integer l real ( kind = 8 ) t ! ! Solve A * X = B. ! if ( job == 0 ) then do k = 1, n-1 l = ipvt(k) t = b(l) if ( l /= k ) then b(l) = b(k) b(k) = t end if call daxpy ( n-k, t, a(k+1,k), 1, b(k+1), 1 ) end do do k = n, 1, -1 b(k) = b(k) / a(k,k) t = -b(k) call daxpy ( k-1, t, a(1,k), 1, b(1), 1 ) end do else ! ! Solve A' * X = B. ! do k = 1, n t = dot_product ( a(1:k-1,k), b(1:k-1) ) b(k) = ( b(k) - t ) / a(k,k) end do do k = n-1, 1, -1 b(k) = b(k) + dot_product ( a(k+1:n,k), b(k+1:n) ) l = ipvt(k) if ( l /= k ) then call d_swap ( b(l), b(k) ) end if end do end if return end function idamax ( n, x, incx ) !*****************************************************************************80 ! !! IDAMAX finds the index of the vector element of maximum absolute value. ! ! Modified: ! ! 08 April 1999 ! ! Reference: ! ! Lawson, Hanson, Kincaid, Krogh, ! Basic Linear Algebra Subprograms for Fortran Usage, ! Algorithm 539, ! ACM Transactions on Mathematical Software, ! Volume 5, Number 3, September 1979, pages 308-323. ! ! Dongarra, Moler, Bunch and Stewart, ! LINPACK User's Guide, ! SIAM, (Society for Industrial and Applied Mathematics), ! 3600 University City Science Center, ! Philadelphia, PA, 19104-2688. ! ISBN 0-89871-172-X ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, real ( kind = 8 ) X(*), the vector to be examined. ! ! Input, integer INCX, the increment between successive entries of SX. ! ! Output, integer IDAMAX, the index of the element of SX of maximum ! absolute value. ! implicit none integer i integer incx integer idamax integer ix integer n real ( kind = 8 ) samax real ( kind = 8 ) x(*) if ( n <= 0 ) then idamax = 0 else if ( n == 1 ) then idamax = 1 else if ( incx == 1 ) then idamax = 1 samax = abs ( x(1) ) do i = 2, n if ( abs ( x(i) ) > samax ) then idamax = i samax = abs ( x(i) ) end if end do else if ( incx >= 0 ) then ix = 1 else ix = ( - n + 1 ) * incx + 1 end if idamax = 1 samax = abs ( x(ix) ) ix = ix + incx do i = 2, n if ( abs ( x(ix) ) > samax ) then idamax = i samax = abs ( x(ix) ) end if ix = ix + incx end do end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! May 31 2001 9:45:54.872 AM ! ! Modified: ! ! 31 May 2001 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d character ( len = 8 ) date integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s character ( len = 10 ) time integer values(8) integer y character ( len = 5 ) zone call date_and_time ( date, time, zone, values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(a,1x,i2,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & trim ( month(m) ), d, y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end