December 31 2025 8:59:56.283 PM geompack3_test(): Fortran90 version Test geompack3(). test_angle(): angle() computes the angles of a polygon. I X Y 1 1.00000 0.00000 2 0.500000 0.866025 3 -0.500000 0.866025 4 -1.00000 0.00000 5 -0.500000 -0.866025 6 0.500000 -0.866025 I Angle 1 2.09440 2 2.09440 3 2.09440 4 2.09440 5 2.09440 6 2.09440 test_area(): AREAPG computes the area of a polygon. AREATR computes the area of a triangle. I, (X,Y) 1 1.00000 0.00000 2 0.500000 0.866025 3 -0.500000 0.866025 4 -1.00000 0.00000 5 -0.500000 -0.866025 6 0.500000 -0.866025 I, Triangle 1 0.00000 2 0.866025 3 1.73205 4 1.73205 5 0.866025 6 0.00000 Area computation by: AREAPG AREATR 5.19615 5.19615 TEST_DHPSRT DHPSRT sorts multidimensional double precision vectors. Unsorted array produced by RANDPT: 1 0.7599364 0.5054622 2 0.4706911 0.7599232 3 0.5826738 0.8983039 4 0.2141440 0.3698621 5 0.0330602 0.8666114 6 0.1252102 0.0976546 7 0.6590629 0.7871201 8 0.8119425 0.8964329 9 0.2092338 0.2415745 10 0.5248115 0.2677833 11 0.2717472 0.6328177 12 0.5525799 0.3104528 13 0.0130475 0.0333018 14 0.8271604 0.9233513 15 0.6098558 0.9847704 16 0.0812091 0.6316019 17 0.4682860 0.4678636 18 0.4022023 0.0043875 19 0.8238210 0.7603937 20 0.5267480 0.1333443 After sorting by DHPSRT: 13 0.0130475 0.0333018 5 0.0330602 0.8666114 16 0.0812091 0.6316019 6 0.1252102 0.0976546 9 0.2092338 0.2415745 4 0.2141440 0.3698621 11 0.2717472 0.6328177 18 0.4022023 0.0043875 17 0.4682860 0.4678636 2 0.4706911 0.7599232 10 0.5248115 0.2677833 20 0.5267480 0.1333443 12 0.5525799 0.3104528 3 0.5826738 0.8983039 15 0.6098558 0.9847704 7 0.6590629 0.7871201 1 0.7599364 0.5054622 8 0.8119425 0.8964329 19 0.8238210 0.7603937 14 0.8271604 0.9233513 test_dtris3(): dtris3() computes the Delaunay "triangulation" of a set of points in 3D. Node coordinates: Row 1 2 3 Col 1 0.00000 0.00000 -1.00000 2 0.00000 -1.00000 0.00000 3 1.00000 0.00000 0.00000 4 0.00000 1.00000 0.00000 5 -1.00000 0.00000 0.00000 6 0.00000 0.00000 1.00000 Tetrahedron indices: Row 1 2 3 4 Col 1 1 2 5 6 2 1 4 5 6 3 1 2 3 6 4 1 3 4 6 BF_NUM = 9 FC_NUM = 12 FACE_NUM = 12 TETRA_NUM = 4 TETRA_BAD_NUM = 0 HT_NUM = 17 min ( ETA ) = 0.857143 min ( RHO ) = 0.803848 min ( SIGMA ) = 0.621320 vm 6 5 2 1 6 4 3 ht 17 9 5 8 0 0 0 0 3 12 4 11 10 0 0 6 0 0 FC 12 1 1 2 3 4 -1 0 5 2 1 2 4 3 -2 0 0 3 1 3 4 2 5 0 -1 4 2 3 4 1 6 0 -1 5 3 4 5 1 6 2 -1 6 1 4 5 3 -6 0 -1 7 1 3 5 4 -7 0 -1 8 3 4 6 2 5 0 -1 9 2 4 6 3 -3 1 -1 10 2 3 6 4 -8 0 -1 11 4 5 6 3 -4 0 -1 12 3 5 6 4 -9 7 -1 BF 9 1 10 7 2 2 9 6 1 3 11 10 2 4 12 9 6 5 0 7 4 6 11 7 2 7 12 6 1 8 12 9 1 9 11 10 7 TEST_IHPSRT IHPSRT sorts multidimensional integer vectors. Unsorted array produced by RANDPT: 21 2 0 After sorting by IHPSRT: 13 0 0 5 0 17 16 1 12 6 2 1 9 4 4 4 4 7 11 5 12 18 8 0 17 9 9 2 9 15 20 10 2 10 10 5 12 11 6 3 11 17 15 12 19 7 13 15 1 15 10 19 16 15 8 16 17 14 16 18 TEST_LU LUFAC computes the LU factorization of a matrix. LUSOL solves a linear system. Matrix A and right hand side b: 0.5198728 0.1653477 -0.9338796 0.3181258 0.0694666 0.0109244 0.7966077 0.7332229 0.5742402 2.1149952 -0.0586178 -0.5717121 -0.7495796 0.6238850 -0.7560245 0.5198465 -0.2602758 -0.8046908 0.7928658 0.2477457 ipvt, lu 1 0.5198728 0.1653477 -0.9338796 0.3181258 2 0.0210136 0.7931332 0.7528470 0.5675552 4 -0.1127541 -0.6973210 0.5331380 0.7793204 4 0.9999493 -0.5366249 -0.6187935 1.5377616 x = 1.0000000 1.0000000 1.0000000 1.0000000 emax,esum = 0.8881784E-15 0.1776357E-14 tf, ts = 0.000 0.000 TEST_MEAS Compute the three tetrahedron quality measures. EMNRTH: eigenvalue measurement; RADRTH: inradius / circumradius; SANGMN: solid angle measurement A = 0.0000 0.0000 0.0000 B = 1.0000 0.0000 0.0000 C = 0.3368 0.2396 0.4411 D = 0.0953 0.6737 0.0874 Sigma = 0.8485460E-01 Rho = 0.6899095E+00 Eta = 0.7671498E+00 Q: 0.1528100E+01 0.1262860E+00 0.1782753E+00 U: 0.8416510E+00 0.1035179E+00 0.1021596E+00 A = 0.0000 0.0000 0.0000 B = 1.0000 0.0000 0.0000 C = 0.1586 0.7582 0.0495 D = 0.8213 0.2065 0.3269 Sigma = 0.1033972E+00 Rho = 0.5410473E+00 Eta = 0.6152487E+00 Q: 0.2323181E+01 0.2142558E+00 0.3532143E+00 U: 0.7788380E+00 0.1488404E+00 0.1405695E+00 A = 0.0000 0.0000 0.0000 B = 1.0000 0.0000 0.0000 C = 0.6183 0.5009 0.9702 D = 0.7923 0.1555 0.0998 Sigma = 0.2144770E-01 Rho = 0.8381002E-01 Eta = 0.2948338E+00 Q: 0.3270122E+01 0.1339722E+00 0.3053436E+01 U: 0.2094657E+00 0.5360407E-01 0.7408543E-01 A = 0.0000 0.0000 0.0000 B = 1.0000 0.0000 0.0000 C = 0.0880 0.1652 0.9320 D = 0.1688 0.5841 0.6663 Sigma = 0.8207576E-01 Rho = 0.6831269E+00 Eta = 0.7022050E+00 Q: 0.1972921E+01 0.1394823E+00 0.1758783E+00 U: 0.8905400E+00 0.1069959E+00 0.9930342E-01 A = 0.0000 0.0000 0.0000 B = 1.0000 0.0000 0.0000 C = 0.1922 0.3314 0.7917 D = 0.2378 0.8403 0.2368 Sigma = 0.1357593E+00 Rho = 0.8889473E+00 Eta = 0.8990236E+00 Q: 0.1223384E+01 0.1592623E+00 0.1717978E+00 U: 0.9628257E+00 0.1470420E+00 0.1439897E+00 Lower bounds on Q: 0.1000000E+01 0.1262860E+00 0.1717978E+00 Upper bounds on U: 0.9628257E+00 0.1488404E+00 0.1439897E+00 TEST_PRIME PRIME returns a prime number greater than a given value I. However, its largest stored prime is 14011. I PRIME(I) 13994 14011 7156 7211 11042 11213 11612 11617 5729 5813 13435 13613 9359 9413 12874 13033 8752 8819 10227 10427 TEST_ROTIAR ROTIAR shifts an integer array. Initial vector: 1 2 3 4 5 6 7 8 9 10 Vector after applying a shift of  4 5 6 7 8 9 10 1 2 3 geompack3_test(): Normal end of execution. December 31 2025 8:59:56.284 PM