2 April 2023 8:45:11.823 PM gegenbauer_exactness(): FORTRAN90 version Investigate the polynomial exactness of a Gauss-Gegenbauer quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. GEGENBAUER_EXACTNESS: User input: Quadrature rule X file = "gegen_o8_a0.5_x.txt". Quadrature rule W file = "gegen_o8_a0.5_w.txt". Quadrature rule R file = "gegen_o8_a0.5_r.txt". Maximum degree to check = 18 Exponent of (1-x^2), ALPHA = 0.500000 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Gegenbauer rule ORDER = 8 ALPHA = 0.500000 Standard rule: Integral ( -1 <= x <= +1 ) (1-x^2)^alpha f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w( 1) = 0.4083294770910693E-01 w( 2) = 0.1442256007956728 w( 3) = 0.2617993877991495 w( 4) = 0.3385402270935191 w( 5) = 0.3385402270935191 w( 6) = 0.2617993877991495 w( 7) = 0.1442256007956728 w( 8) = 0.4083294770910754E-01 Abscissas X: x( 1) = -0.9396926207859084 x( 2) = -0.7660444431189780 x( 3) = -0.5000000000000000 x( 4) = -0.1736481776669303 x( 5) = 0.1736481776669303 x( 6) = 0.5000000000000000 x( 7) = 0.7660444431189780 x( 8) = 0.9396926207859084 Region R: r( 1) = -1.000000000000000 r( 2) = 1.000000000000000 A Gauss-Gegenbauer rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree Exponents 0.0000000000000003 0 0 0.0000000000000006 1 1 0.0000000000000008 2 2 0.0000000000000005 3 3 0.0000000000000007 4 4 0.0000000000000004 5 5 0.0000000000000016 6 6 0.0000000000000004 7 7 0.0000000000000021 8 8 0.0000000000000003 9 9 0.0000000000000024 10 10 0.0000000000000003 11 11 0.0000000000000027 12 12 0.0000000000000003 13 13 0.0000000000000035 14 14 0.0000000000000002 15 15 0.0006993006992975 16 16 0.0000000000000002 17 17 0.0032908268202348 18 18 GEGENBAUER_EXACTNESS: Normal end of execution. 2 April 2023 8:45:11.824 PM