subroutine ch_cap ( ch ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Discussion: ! ! Instead of CHAR and ICHAR, we now use the ACHAR and IACHAR functions, ! which guarantee the ASCII collating sequence. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character CH, the character to capitalize. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ch integer itemp itemp = iachar ( ch ) if ( 97 <= itemp .and. itemp <= 122 ) then ch = achar ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is .TRUE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical ch_eqi character c1 character c1_cap character c2 character c2_cap c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the integer value of a base 10 digit. ! ! Example: ! ! C DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer DIGIT, the corresponding integer value. ! If C was 'illegal', then DIGIT is -1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c == ' ' ) then digit = 0 else digit = -1 end if return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine ffmsh_2d_data_example ( v_num, e_num, t_num, v_xy, v_l, e_v, e_l, & t_v, t_l ) !*****************************************************************************80 ! !! FFMSH_2D_DATA_EXAMPLE returns example FFMSH data. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer V_NUM, the number of vertices. ! ! Input, integer E_NUM, the number of boundary edges. ! ! Input, integer T_NUM, the number of triangles. ! ! Output, real ( kind = rk ) V_XY(2,V_NUM), vertex coordinates. ! ! Output, integer V_L(V_NUM), vertex labels. ! ! Output, integer E_V(2,E_NUM), edge vertices. ! ! Output, integer E_L(E_NUM), vertex labels. ! ! Output, integer T_V(3,T_NUM), triangle vertices. ! ! Output, integer T_L(T_NUM), triangle labels. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num integer v_num integer e_l(e_num) integer, dimension (10) :: e_l_save = (/ & 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 /) integer e_v(2,e_num) integer, dimension ( 2, 10 ) :: e_v_save = reshape ( (/ & 11, 6, & 6, 4, & 4, 1, & 1, 2, & 2, 5, & 5, 9, & 9, 13, & 13, 15, & 15, 14, & 14, 11 /), (/ 2, 10 /) ) integer t_l(t_num) integer, dimension (18) :: t_l_save = (/ & 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /) integer t_v(3,t_num) integer, dimension ( 3, 18 ) :: t_v_save = reshape ( (/ & 1, 3, 4, & 7, 2, 5, & 9, 7, 5, & 8, 6, 4, & 12, 8, 7, & 12, 11, 8, & 3, 1, 2, & 7, 3, 2, & 7, 8, 3, & 4, 3, 8, & 6, 8, 11, & 12, 7, 10, & 11, 12, 14, & 10, 9, 13, & 12, 10, 13, & 7, 9, 10, & 12, 13, 15, & 14, 12, 15 /), (/ 3, 18 /) ) integer v_l(v_num) integer, dimension (15) :: v_l_save = (/ & 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1 /) real ( kind = rk ) v_xy(2,v_num) real ( kind = rk ), dimension ( 2, 15 ) :: v_xy_save = reshape ( (/ & -0.309016994375D+00, 0.951056516295D+00, & -0.809016994375D+00, 0.587785252292D+00, & -0.321175165867D+00, 0.475528256720D+00, & 0.309016994375D+00, 0.951056516295D+00, & -1.000000000000D+00, 0.000000000000D+00, & 0.809016994375D+00, 0.587785252292D+00, & -0.333333334358D+00, 0.000000000000D+00, & 0.237841829972D+00, 0.293892623813D+00, & -0.809016994375D+00, -0.587785252292D+00, & -0.321175165867D+00, -0.475528259963D+00, & 1.000000000000D+00, 0.000000000000D+00, & 0.206011327827D+00, -0.391856835534D+00, & -0.309016994375D+00, -0.951056516295D+00, & 0.809016994375D+00, -0.587785252292D+00, & 0.309016994375D+00, -0.951056516295D+00 /), (/ 2, 15 /) ) call i4vec_copy ( v_num, v_l_save, v_l ) call r8mat_copy ( 2, v_num, v_xy_save, v_xy ) call i4vec_copy ( e_num, e_l_save, e_l ) call i4mat_copy ( 2, e_num, e_v_save, e_v ) call i4vec_copy ( t_num, t_l_save, t_l ) call i4mat_copy ( 3, t_num, t_v_save, t_v ) return end subroutine ffmsh_2d_data_print ( title, v_num, e_num, t_num, v_xy, v_l, e_v, & e_l, t_v, t_l ) !*****************************************************************************80 ! !! FFMSH_2D_DATA_PRINT prints FFMSH data. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) TITLE, a title. ! ! Input, integer V_NUM, the number of vertices. ! ! Input, integer E_NUM, the number of boundary edges. ! ! Input, integer T_NUM, the number of triangles. ! ! Input, real ( kind = rk ) V_XY(2,V_NUM), vertex coordinates. ! ! Input, integer V_L(V_NUM), vertex labels. ! ! Input, integer E_V(2,E_NUM), edge vertices. ! ! Input, integer E_L(E_NUM), vertex labels. ! ! Input, integer T_V(3,T_NUM), triangle vertices. ! ! Input, integer T_L(T_NUM), triangle labels. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num integer v_num integer e_l(e_num) integer e_v(2,e_num) integer t_l(t_num) integer t_v(3,t_num) character ( len = * ) title integer v_l(v_num) real ( kind = rk ) v_xy(2,v_num) write ( *, '(a)' ) '' write ( *, '(a)' ) trim ( title ) call i4vec_print ( v_num, v_l, ' Vertex labels:' ) call r8mat_transpose_print ( 2, v_num, v_xy, ' Vertex coordinates:' ) call i4vec_print ( e_num, e_l, ' Edge labels:' ) call i4mat_transpose_print ( 2, e_num, e_v, ' Edge vertices:' ) call i4vec_print ( t_num, t_l, ' Triangle labels:' ) call i4mat_transpose_print ( 3, t_num, t_v, ' Triangle vertices:' ) return end subroutine ffmsh_2d_data_read ( ffmsh_filename, v_num, e_num, t_num, v_xy, & v_l, e_v, e_l, t_v, t_l ) !*****************************************************************************80 ! !! FFMSH_2D_DATA_READ reads data from an FFMSH file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) FFMSH_FILENAME, the FFMSH filename. ! ! Input, integer V_NUM, the number of vertices. ! ! Input, integer E_NUM, the number of boundary edges. ! ! Input, integer T_NUM, the number of triangles. ! ! Output, real ( kind = rk ) V_XY(2,V_NUM), vertex coordinates. ! ! Output, integer V_L(V_NUM), vertex labels. ! ! Output, integer E_V(2,E_NUM), edge vertices. ! ! Output, integer E_L(E_NUM), vertex labels. ! ! Output, integer T_V(3,T_NUM), triangle vertices. ! ! Output, integer T_L(T_NUM), triangle labels. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num integer v_num integer e_l(e_num) integer e_num2 integer e_v(2,e_num) character ( len = * ) ffmsh_filename integer ffmsh_stat integer ffmsh_unit integer i1 integer i2 integer i3 integer i4 integer ierror integer j integer length real ( kind = rk ) r1 real ( kind = rk ) r2 integer t_l(t_num) integer t_num2 integer t_v(3,t_num) character ( len = 255 ) text integer v_num2 integer v_l(v_num) real ( kind = rk ) v_xy(2,v_num) call get_unit ( ffmsh_unit ) open ( unit = ffmsh_unit, file = ffmsh_filename, status = 'old', & iostat = ffmsh_stat ) if ( ffmsh_stat /= 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'FFMSH_2D_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Could not open input file "' // & trim ( ffmsh_filename ) // '"' stop 1 end if ! ! Read the sizes (again). ! read ( ffmsh_unit, '(a)', iostat = ffmsh_stat ) text call s_to_i4 ( text, v_num2, ierror, length ) text = text(length+1:) call s_to_i4 ( text, t_num2, ierror, length ) text = text(length+1:) call s_to_i4 ( text, e_num2, ierror, length ) ! ! Read Vertex X, Y, Label ! do j = 1, v_num read ( ffmsh_unit, '(a)', iostat = ffmsh_stat ) text call s_to_r8 ( text, r1, ierror, length ) text = text(length+1:) call s_to_r8 ( text, r2, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i1, ierror, length ) v_xy(1,j) = r1 v_xy(2,j) = r2 v_l(j) = i1 end do ! ! Read Triangle V1, V2, V3, Label ! do j = 1, t_num read ( ffmsh_unit, '(a)', iostat = ffmsh_stat ) text call s_to_i4 ( text, i1, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i2, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i3, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i4, ierror, length ) t_v(1,j) = i1 t_v(2,j) = i2 t_v(3,j) = i3 t_l(j) = i4 end do ! ! Read Edge V1, V2, Label ! do j = 1, e_num read ( ffmsh_unit, '(a)', iostat = ffmsh_stat ) text call s_to_i4 ( text, i1, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i2, ierror, length ) text = text(length+1:) call s_to_i4 ( text, i3, ierror, length ) e_v(1,j) = i1 e_v(2,j) = i2 e_l(j) = i3 end do close ( unit = ffmsh_unit ) return end subroutine ffmsh_2d_size_example ( v_num, e_num, t_num ) !*****************************************************************************80 ! !! FFMSH_2D_SIZE_EXAMPLE returns sizes for the 2D example. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer V_NUM, the number of vertices. ! ! Output, integer E_NUM, the number of boundary edges. ! ! Output, integer T_NUM, the number of triangles. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num integer v_num e_num = 10 t_num = 18 v_num = 15 return end subroutine ffmsh_2d_size_print ( title, v_num, e_num, t_num ) !*****************************************************************************80 ! !! FFMSH_2D_SIZE_PRINT prints the sizes of an FFMSH. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) TITLE, a title. ! ! Input, integer V_NUM, the number of vertices. ! ! Input, integer E_NUM, the number of boundary edges. ! ! Input, integer T_NUM, the number of triangles. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num character ( len = * ) title integer v_num write ( *, '(a)' ) '' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) '' write ( *, '(a,i6)' ) ' Number of vertices = ', v_num write ( *, '(a,i6)' ) ' Number of boundary edges = ', e_num write ( *, '(a,i6)' ) ' Number of triangles = ', t_num return end subroutine ffmsh_2d_size_read ( ffmsh_filename, v_num, e_num, t_num ) !*****************************************************************************80 ! !! FFMSH_2D_SIZE_READ reads sizes from a FFMSH file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) FFMSH_FILENAME, the FFMSH filename. ! ! Output, integer V_NUM, the number of vertices. ! ! Output, integer E_NUM, the number of boundary edges. ! ! Output, integer T_NUM, the number of triangles. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num character ( len = * ) ffmsh_filename integer ffmsh_stat integer ffmsh_unit integer ierror integer length integer t_num character ( len = 255 ) text integer v_num call get_unit ( ffmsh_unit ) open ( unit = ffmsh_unit, file = ffmsh_filename, status = 'old', & iostat = ffmsh_stat ) if ( ffmsh_stat /= 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'FFMSH_SIZE_READ - Fatal error!' write ( *, '(a)' ) ' Could not open the input file "' // & trim ( ffmsh_filename ) // '"' stop 1 end if read ( ffmsh_unit, '(a)', iostat = ffmsh_stat ) text call s_to_i4 ( text, v_num, ierror, length ) text = text(length+1:) call s_to_i4 ( text, t_num, ierror, length ) text = text(length+1:) call s_to_i4 ( text, e_num, ierror, length ) close ( unit = ffmsh_unit ) return end subroutine ffmsh_2d_write ( ffmsh_filename, v_num, e_num, t_num, v_xy, v_l, & e_v, e_l, t_v, t_l ) !*****************************************************************************80 ! !! FFMSH_2D_WRITE writes FFMSH data to a file. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) FFMSH_FILENAME, the name of the file. ! ! Input, integer V_NUM, the number of vertices. ! ! Input, integer E_NUM, the number of boundary edges. ! ! Input, integer T_NUM, the number of triangles. ! ! Input, real ( kind = rk ) V_XY(2,V_NUM), vertex coordinates. ! ! Input, integer V_L(V_NUM), vertex labels. ! ! Input, integer E_V(2,E_NUM), edge vertices. ! ! Input, integer E_L(E_NUM), vertex labels. ! ! Input, integer T_V(3,T_NUM), triangle vertices. ! ! Input, integer T_L(T_NUM), triangle labels. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer e_num integer t_num integer v_num integer e_l(e_num) integer e_v(2,e_num) character * ( * ) ffmsh_filename integer ffmsh_unit integer j integer t_l(t_num) integer t_v(3,t_num) integer v_l(v_num) real ( kind = rk ) v_xy(2,v_num) ! ! Open the file. ! call get_unit ( ffmsh_unit ) open ( unit = ffmsh_unit, file = ffmsh_filename, status = 'replace' ) ! ! Write the data. ! write ( ffmsh_unit, '(2x,i6,2x,i6,2x,i6)' ) v_num, t_num, e_num do j = 1, v_num write ( ffmsh_unit, '(2x,g14.6,2x,g14.6,2x,i6)' ) v_xy(1:2,j), v_l(j) end do do j = 1, t_num write ( ffmsh_unit, '(2x,i6,2x,i6,2x,i6,2x,i6)' ) t_v(1:3,j), t_l(j) end do do j = 1, e_num write ( ffmsh_unit, '(2x,i6,2x,i6,2x,i6)' ) e_v(1:2,j), e_l(j) end do close ( unit = ffmsh_unit ) return end subroutine i4mat_copy ( m, n, a1, a2 ) !*****************************************************************************80 ! !! I4MAT_COPY copies an I4MAT. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 October 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A1(M,N), the matrix to be copied. ! ! Output, integer A2(M,N), the copied matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a1(m,n) integer a2(m,n) a2(1:m,1:n) = a1(1:m,1:n) return end subroutine i4mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) character ( len = * ) title call i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 10 integer m integer n integer a(m,n) character ( len = 8 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m <= 0 .or. n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8)' ) i end do write ( *, '('' Row '',10a8)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i8)' ) a(i,j) end do write ( *, '(i5,a,10a8)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end subroutine i4vec_copy ( n, a1, a2 ) !*****************************************************************************80 ! !! I4VEC_COPY copies an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the length of the vectors. ! ! Input, integer A1(N), the vector to be copied. ! ! Output, integer A2(N), a copy of A1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a1(n) integer a2(n) a2(1:n) = a1(1:n) return end subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, integer A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,a,2x,i12)' ) i, ':', a(i) end do return end subroutine mesh_base_one ( node_num, element_order, element_num, element_node ) !*****************************************************************************80 ! !! MESH_BASE_ONE ensures that the element definition is one-based. ! ! Discussion: ! ! The ELEMENT_NODE array contains nodes indices that form elements. ! The convention for node indexing might start at 0 or at 1. ! Since a FORTRAN90 program will naturally assume a 1-based indexing, it is ! necessary to check a given element definition and, if it is actually ! 0-based, to convert it. ! ! This function attempts to detect 9-based node indexing and correct it. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 October 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, int NODE_NUM, the number of nodes. ! ! Input, int ELEMENT_ORDER, the order of the elements. ! ! Input, int ELEMENT_NUM, the number of elements. ! ! Input/output, int ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the element ! definitions. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer element_num integer element_order integer element_node(element_order,element_num) integer, parameter :: i4_huge = 2147483647 integer node_max integer node_min integer node_num node_min = + i4_huge node_max = - i4_huge node_min = minval ( element_node(1:element_order,1:element_num) ) node_max = maxval ( element_node(1:element_order,1:element_num) ) if ( node_min == 0 .and. node_max == node_num - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 0-based!' write ( *, '(a)' )' This will be converted to 1-based.' element_node(1:element_order,1:element_num) = & element_node(1:element_order,1:element_num) + 1 else if ( node_min == 1 .and. node_max == node_num ) then write ( *, '(a)' ) ' ' write ( *, '(a)' )'MESH_BASE_ONE:' write ( *, '(a)' )' The element indexing appears to be 1-based!' write ( *, '(a)' )' No conversion is necessary.' else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MESH_BASE_ONE - Warning!' write ( *, '(a)' ) ' The element indexing is not of a recognized type.' write ( *, '(a,i8)' ) ' NODE_MIN = ', node_min write ( *, '(a,i8)' ) ' NODE_MAX = ', node_max write ( *, '(a,i8)' ) ' NODE_NUM = ', node_num end if return end subroutine r8mat_copy ( m, n, a, b ) !*****************************************************************************80 ! !! R8MAT_COPY copies an R8MAT. ! ! Discussion: ! ! An R8MAT is an MxN array of R8's, stored by (I,J) -> (I+J*M). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 July 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the order of the matrix. ! ! Input, real ( kind = rk ) A(M,N), the matrix to be copied. ! ! Output, real ( kind = rk ) B(M,N), a copy of the matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) real ( kind = rk ) b(m,n) b(1:m,1:n) = a(1:m,1:n) return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an MxN array of R8's, stored by (I,J) -> [I+J*M]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an MxN array of R8's, stored by (I,J) -> [I+J*M]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 September 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m <= 0 .or. n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)' ) i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,a,5a14)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end subroutine s_to_i4 ( s, ival, ierror, length ) !*****************************************************************************80 ! !! S_TO_I4 reads an I4 from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, a string to be examined. ! ! Output, integer IVAL, the integer value read from the string. ! If the string is blank, then IVAL will be returned 0. ! ! Output, integer IERROR, an error flag. ! 0, no error. ! 1, an error occurred. ! ! Output, integer LENGTH, the number of characters of S ! used to make IVAL. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer i integer ierror integer isgn integer istate integer ival integer length character ( len = * ) s ierror = 0 istate = 0 isgn = 1 ival = 0 do i = 1, len_trim ( s ) c = s(i:i) ! ! Haven't read anything. ! if ( istate == 0 ) then if ( c == ' ' ) then else if ( c == '-' ) then istate = 1 isgn = -1 else if ( c == '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read the sign, expecting digits. ! else if ( istate == 1 ) then if ( c == ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if ! ! Have read at least one digit, expecting more. ! else if ( istate == 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do ! ! If we read all the characters in the string, see if we're OK. ! if ( istate == 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = rk ) DVAL, the value read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c logical ch_eqi real ( kind = rk ) dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig real ( kind = rk ) rbot real ( kind = rk ) rexp real ( kind = rk ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = rk ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length + 1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = rk ) & / real ( jbot, kind = rk ) ) end if end if dval = real ( isgn, kind = rk ) * rexp * rtop / rbot return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end