program main !*****************************************************************************80 ! !! fire_simulation() simulates the spread of a forest fire. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013. ! ! Author: ! ! FORTRAN90 version by John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: forest_size = 20 integer forest(forest_size,forest_size) logical forest_is_burning integer i_ignite integer i4_uniform_ab integer j_ignite real ( kind = rk ) percent real ( kind = rk ), parameter :: prob_spread = 0.5D+00 integer seed call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'fire_simulation' write ( *, '(a)' ) ' FORTRAN90 version' write ( *, '(a)' ) ' A probabilistic simulation of a forest fire.' write ( *, '(a,g14.6)' ) ' The probability of tree-to-tree spread is ', prob_spread ! ! Initialize the random number generator. ! seed = 123456789 write ( *, '(a,i12)' ) ' The random number generator is seeded by ', seed ! ! Initialize the values in the forest. ! call forest_initialize ( forest_size, forest ) ! ! Choose a tree at random where the fire will start. ! i_ignite = i4_uniform_ab ( 1, forest_size, seed ) j_ignite = i4_uniform_ab ( 1, forest_size, seed ) call tree_ignite ( forest_size, forest, i_ignite, j_ignite ) write ( *, '(a)' ) '' write ( *, '(a,i2,a,i2,a)' ) ' Fire starts at tree(', i_ignite, ',', j_ignite, ')' ! ! Let time run until nothing is burning any more. ! do while ( forest_is_burning ( forest_size, forest ) ) call forest_burns ( forest_size, forest, prob_spread ) end do ! ! Display the final forest state. ! call forest_print ( forest_size, forest, i_ignite, j_ignite ) ! ! Report the percentage of forest burned. ! call get_percent_burned ( forest_size, forest, percent ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) ' Percentage of forest burned = ', percent ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'fire_simulation:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop ( 0 ) end function fire_spreads ( prob_spread ) !*****************************************************************************80 ! !! fire_spreads() determines whether the fire spreads. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) PROB_SPREAD, the probability of spreading. ! ! Output, logical FIRE_SPREADS, is TRUE if the fire spreads. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) prob_spread logical fire_spreads real ( kind = rk ) u call random_number ( harvest = u ) if ( u < prob_spread ) then fire_spreads = .true. else fire_spreads = .false. end if return end subroutine forest_burns ( forest_size, forest, prob_spread ) !*****************************************************************************80 ! !! forest_burns() models a single time step of the burning forest. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of the forest. ! ! Input/output, integer FOREST(FOREST_SIZE,FOREST_SIZE), an ! array with an entry for each tree in the forest. ! ! Input, real ( kind = rk ) PROB_SPREAD, the probability that the fire will ! spread from a burning tree to an unburnt one. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer, parameter :: BURNING = 2 integer, parameter :: BURNT = 3 logical fire_spreads integer forest(forest_size,forest_size) integer i integer j real ( kind = rk ) prob_spread integer, parameter :: SMOLDERING = 1 integer, parameter :: UNBURNT = 0 ! ! Burning trees burn down; ! Smoldering trees ignite; ! do j = 1, forest_size do i = 1, forest_size if ( forest(i,j) == BURNING ) then forest(i,j) = BURNT else if ( forest(i,j) == SMOLDERING ) then forest(i,j) = BURNING end if end do end do ! ! Unburnt trees might catch fire. ! do j = 1, forest_size do i = 1, forest_size if ( forest(i,j) == BURNING ) then ! ! North. ! if ( 1 < i ) then if ( fire_spreads ( prob_spread ) .and. forest(i-1,j) == UNBURNT ) then forest(i-1,j) = SMOLDERING end if end if ! ! South. ! if ( i < forest_size ) then if ( fire_spreads ( prob_spread ) .and. forest(i+1,j) == UNBURNT ) then forest(i+1,j) = SMOLDERING end if end if ! ! West. ! if ( 1 < j ) then if ( fire_spreads ( prob_spread ) .and. forest(i,j-1) == UNBURNT ) then forest(i,j-1) = SMOLDERING end if end if ! ! East. ! if ( j < forest_size ) then if ( fire_spreads ( prob_spread ) .and. forest(i,j+1) == UNBURNT ) then forest(i,j+1) = SMOLDERING end if end if end if end do end do return end subroutine forest_initialize ( forest_size, forest ) !*****************************************************************************80 ! !! FOREST_INITIALIZE initializes the forest values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of the forest. ! ! Output, integer FOREST(FOREST_SIZE,FOREST_SIZE), an array ! with an entry for each tree in the forest. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer forest(forest_size,forest_size) integer, parameter :: UNBURNT = 0 forest(1:forest_size,1:forest_size) = UNBURNT return end function forest_is_burning ( forest_size, forest ) !*****************************************************************************80 ! !! FOREST_IS_BURNING reports whether any trees in the forest are burning. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of the forest. ! ! Input, integer FOREST(FOREST_SIZE,FOREST_SIZE), an array ! with an entry for each tree in the forest. ! ! Output, logical FOREST_IS_BURNING, is TRUE if any tree in the forest ! is in the SMOLDERING or BURNING state. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer, parameter :: BURNING = 2 integer forest(forest_size,forest_size) logical forest_is_burning integer i integer j integer, parameter :: SMOLDERING = 1 logical value value = .false. do j = 1, forest_size do i = 1, forest_size if ( forest(i,j) == SMOLDERING .or. forest(i,j) == BURNING ) then value = .true. end if end do end do forest_is_burning = value return end subroutine forest_print ( forest_size, forest, i_ignite, j_ignite ) !*****************************************************************************80 ! !! FOREST_PRINT prints the state of the trees in the forest. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of the forest. ! ! Input, integer FOREST(FOREST_SIZE,FOREST_SIZE), an array ! with an entry for each tree in the forest. ! ! Input, integer I_IGNITE, J_IGNITE, the location of the start ! of the fire. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer, parameter :: BURNT = 3 integer forest(forest_size,forest_size) integer i integer i_ignite integer j integer j_ignite write ( *, '(a)' ) '' write ( *, '(a)' ) ' Map of fire damage.' write ( *, '(a)' ) ' Fire started at "*".' write ( *, '(a)' ) ' Burned trees are indicated by ".".' write ( *, '(a)' ) ' Unburned trees are indicated by "X".' write ( *, '(a)' ) '' do i = 1, forest_size write ( *, '(a)', ADVANCE='NO' ) ' ' do j = 1, forest_size if ( i == i_ignite .and. j == j_ignite ) then write ( *, '(a)', ADVANCE='NO' ) '*' else if ( forest(i,j) == BURNT ) then write ( *, '(a)', ADVANCE='NO' ) '.' else write ( *, '(a)', ADVANCE='NO' ) 'X' end if end do write ( *, '(a)' ) '' end do return end subroutine get_percent_burned ( forest_size, forest, percent ) !*****************************************************************************80 ! !! GET_PERCENT_BURNED computes the percentage of the forest that burned. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of the forest. ! ! Input, integer FOREST(FOREST_SIZE,FOREST_SIZE), an array ! with an entry for each tree in the forest. ! ! Output, real ( kind = rk ) PERCENT, the percentage of the forest ! that burned. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer, parameter :: BURNT = 3 integer forest(forest_size,forest_size) integer i integer j real ( kind = rk ) percent integer total total = 0 do j = 1, forest_size do i = 1, forest_size if ( forest(i,j) == BURNT ) then total = total + 1 end if end do end do percent = real ( total, kind = rk ) & / real ( forest_size * forest_size, kind = rk ) return end function i4_uniform_ab ( a, b, seed ) !*****************************************************************************80 ! !! I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. ! ! Discussion: ! ! An I4 is an integer value. ! ! The pseudorandom number will be scaled to be uniformly distributed ! between A and B. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 October 2012 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Second Edition, ! Springer, 1987, ! ISBN: 0387964673, ! LC: QA76.9.C65.B73. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, December 1986, pages 362-376. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley, 1998, ! ISBN: 0471134031, ! LC: T57.62.H37. ! ! Peter Lewis, Allen Goodman, James Miller, ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, Number 2, 1969, pages 136-143. ! ! Parameters: ! ! Input, integer A, B, the limits of the interval. ! ! Input/output, integer SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, integer I4_UNIFORM_AB, a number between A and B. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b integer, parameter :: i4_huge = 2147483647 integer i4_uniform_ab integer k real ( kind = rk ) r integer seed integer value if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_UNIFORM_AB - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + i4_huge end if r = real ( seed, kind = rk ) * 4.656612875D-10 ! ! Scale R to lie between A-0.5 and B+0.5. ! r = ( 1.0D+00 - r ) * ( real ( min ( a, b ), kind = rk ) - 0.5D+00 ) & + r * ( real ( max ( a, b ), kind = rk ) + 0.5D+00 ) ! ! Use rounding to convert R to an integer between A and B. ! value = nint ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) i4_uniform_ab = value return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end subroutine tree_ignite ( forest_size, forest, i_ignite, j_ignite ) !*****************************************************************************80 ! !! TREE_IGNITE sets a given tree to the SMOLDERING state. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 June 2013 ! ! Author: ! ! FORTRAN90 version by John Burkardt ! ! Parameters: ! ! Input, integer FOREST_SIZE, the linear dimension of ! the forest. ! ! Input, integer FOREST(FOREST_SIZE,FOREST_SIZE), an array ! with an entry for each tree in the forest. ! ! Input, integer I_IGNITE, J_IGNITE, the coordinates of the ! tree which is to be set to SMOLDERING. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer forest_size integer forest(forest_size,forest_size) integer i_ignite integer j_ignite integer, parameter :: SMOLDERING = 1 forest(i_ignite,j_ignite) = SMOLDERING return end