6 October 2025 6:18:19.940 PM fftw_test(): Fortran90 version Test fftw(). TEST01 Demonstrate FFTW on a single vector of complex data. Transform data to FFT coefficients. Backtransform FFT coefficients to recover the data. Compare recovered data to original data. Input Data: 1 -0.219640E-01 -0.104630 2 -0.975082 -0.197514 3 0.856795E-02 -0.518595 4 -0.806141 0.571289 5 0.214513 0.232963 6 0.709181 -0.115888 7 0.227828 0.303415E-01 8 0.488426 -0.813775 9 -0.630870 0.276875 10 -0.490893 -0.416117 11 -0.123302 -0.791306 12 -0.306170 -0.691062 13 -0.105511 0.557154 14 -0.505811 -0.597638 15 -0.540359 0.685315 16 -0.729232 0.119293 17 0.247888 -0.179882 18 0.659460 -0.544614 19 0.800216 -0.512729E-01 20 0.456197 0.203339 21 -0.365353 -0.429733 22 0.462972 0.723630 23 -0.911075 0.144982 24 0.510087 -0.163056 25 0.179455 0.707784 26 -0.196622 -0.322174 27 -0.569651E-01 -0.833693 28 -0.192428 0.138531 29 0.400059 -0.543891 30 -0.208848 0.529041 31 -0.606503 -0.577411 32 -0.275253 0.861098 33 0.703442 0.247208 34 -0.341601 -0.743255 35 0.722692 -0.678772 36 -0.179662 0.502633 37 -0.404450 0.430866 38 -0.964631 0.562779E-01 39 -0.778881 0.219225 40 -0.557307 0.713762 41 -0.960540 -0.576845E-01 42 0.645710 -0.520196 43 -0.253401 0.910626 44 -0.671260 -0.621598 45 -0.476812 -0.545582 46 -0.828475 0.223939 47 -0.652306E-01 0.485971 48 0.690198 0.630108 49 -0.141952 -0.733170 50 0.336835 -0.515742 51 0.118339 -0.523653 52 0.130233 -0.867356 53 0.260157 -0.108160 54 -0.533726 0.720878 55 0.617865 0.302349 56 0.425696 -0.289412 57 0.124619 0.661917 58 -0.761109 0.116736 59 0.542597 -0.737130 60 -0.579534 -0.900214E-01 61 -0.143042 -0.135962 62 -0.229776 0.135980 63 -0.735139 -0.844039E-01 64 -0.521344E-02 -0.256070 65 0.632809 0.255938 66 -0.258392 -0.254596 67 0.922927 0.122631 68 -0.759456E-01 -0.636754 69 -0.915948E-01 0.275341 70 0.481118 0.553993 71 -0.463133 0.365848 72 -0.118781 0.165382 73 -0.724660 0.471612 74 -0.781414 0.189152 75 0.473677 0.422563 76 0.343874 -0.579026E-01 77 -0.144041 0.699323 78 0.548904E-01 -0.232151 79 0.637758 0.894449E-01 80 0.101769 -0.659740 81 -0.398786 -0.382173E-01 82 0.473416 0.393493 83 0.231293 -0.656704 84 0.250323 -0.316791 85 -0.590192 0.538435 86 0.356301 -0.266271E-01 87 -0.777414 0.287357 88 -0.627849 -0.617027E-01 89 0.638293 0.150795 90 -0.707858 0.467957 91 0.172893 0.416554E-01 92 -0.349531 -0.441526 93 0.643222 0.106067 94 -0.429225 0.352106 95 0.182119 -0.729841 96 -0.239804 -0.521875 97 -0.672081 -0.231226 98 0.333518 0.492016E-01 99 0.171454 0.479777 100 -0.824885 -0.447247 Output FFT Coefficients: 1 -8.15082 -2.09514 2 -2.58481 0.126906 3 -5.08085 -7.88475 4 -2.93811 5.10305 5 2.42261 -1.99407 6 -3.32847 0.439587 7 11.5300 -0.559781 8 -6.73491 1.59458 9 -6.88767 -3.63110 10 0.426954 4.02964 11 -2.20426 0.128285 12 0.786882 1.29437 13 1.75048 -6.23240 14 -7.89677 4.65640 15 -6.30489 5.24476 16 0.939461 0.649310 17 -2.01684 2.63316 18 6.20907 4.40872 19 0.651108 -7.85307 20 -3.82858 -3.85620 21 -1.21424 -0.604856 22 -9.15241 0.255894 23 1.58301 -6.62961 24 -1.46883 -1.60844 25 3.20146 -3.99929 26 0.710112 4.65671 27 0.704816 1.90354 28 2.23744 -3.42241 29 -5.13048 9.00496 30 8.12940 1.72243 31 -6.92452 -9.24376 32 -1.05215 -3.92355 33 -1.40634 -2.79037 34 -3.36637 -0.470193 35 5.40451 5.21002 36 5.88685 -7.50231 37 4.77904 10.0676 38 -5.36009 1.65759 39 8.59301 7.58639 40 10.2889 -4.28369 41 -4.38293 -4.79031 42 11.7729 8.20117 43 1.92163 10.7670 44 7.16392 5.73302 45 0.195092 -3.53691 46 -2.71197 -5.13998 47 -0.109578 -0.272448 48 -1.14608 -7.04734 49 0.389251 0.721919 50 4.33633 0.604072 51 5.53369 3.91403 52 -3.46321 4.02242 53 8.11123 0.389400 54 11.7230 3.14177 55 -3.94164 -6.22031 56 -4.85683 6.09470 57 0.974816 -0.711840 58 -1.38412 -5.33179 59 4.07829 -3.46435 60 4.06258 1.40176 61 -1.49846 -6.37930 62 0.913704 -3.35784 63 1.77759 3.04692 64 -5.15556 1.43149 65 -4.42802 -3.83940 66 -1.73646 3.78846 67 -3.66202 -0.318563 68 5.93739 0.741309E-01 69 6.44637 6.78920 70 2.13725 0.377533 71 -2.46715 3.63260 72 -8.83284 -1.75715 73 4.78881 1.20848 74 -2.58669 -4.47617 75 -0.879855 14.0139 76 -5.40254 3.54096 77 -0.996983 -3.29843 78 -2.23852 -0.750535 79 1.17859 4.98080 80 1.18568 -3.62756 81 -1.69618 -1.09891 82 3.01178 2.08820 83 0.921785 -6.55756 84 7.70275 -2.55046 85 0.624838 -5.96068 86 0.886478 -0.957178 87 -4.08301 -9.97023 88 -0.164877 8.85021 89 10.1567 -11.2045 90 -2.61589 -0.654964 91 -4.90905 -5.97356 92 0.340157 -0.458950 93 -7.24838 4.98533 94 -9.94727 6.96777 95 -3.07357 -1.05192 96 -0.266426 1.61612 97 7.30735 1.15846 98 -5.46151 -1.99622 99 -1.50953 -0.633582 100 1.87809 -4.40491 Recovered input data divided by N: 1 -0.219640E-01 -0.104630 2 -0.975082 -0.197514 3 0.856795E-02 -0.518595 4 -0.806141 0.571289 5 0.214513 0.232963 6 0.709181 -0.115888 7 0.227828 0.303415E-01 8 0.488426 -0.813775 9 -0.630870 0.276875 10 -0.490893 -0.416117 11 -0.123302 -0.791306 12 -0.306170 -0.691062 13 -0.105511 0.557154 14 -0.505811 -0.597638 15 -0.540359 0.685315 16 -0.729232 0.119293 17 0.247888 -0.179882 18 0.659460 -0.544614 19 0.800216 -0.512729E-01 20 0.456197 0.203339 21 -0.365353 -0.429733 22 0.462972 0.723630 23 -0.911075 0.144982 24 0.510087 -0.163056 25 0.179455 0.707784 26 -0.196622 -0.322174 27 -0.569651E-01 -0.833693 28 -0.192428 0.138531 29 0.400059 -0.543891 30 -0.208848 0.529041 31 -0.606503 -0.577411 32 -0.275253 0.861098 33 0.703442 0.247208 34 -0.341601 -0.743255 35 0.722692 -0.678772 36 -0.179662 0.502633 37 -0.404450 0.430866 38 -0.964631 0.562779E-01 39 -0.778881 0.219225 40 -0.557307 0.713762 41 -0.960540 -0.576845E-01 42 0.645710 -0.520196 43 -0.253401 0.910626 44 -0.671260 -0.621598 45 -0.476812 -0.545582 46 -0.828475 0.223939 47 -0.652306E-01 0.485971 48 0.690198 0.630108 49 -0.141952 -0.733170 50 0.336835 -0.515742 51 0.118339 -0.523653 52 0.130233 -0.867356 53 0.260157 -0.108160 54 -0.533726 0.720878 55 0.617865 0.302349 56 0.425696 -0.289412 57 0.124619 0.661917 58 -0.761109 0.116736 59 0.542597 -0.737130 60 -0.579534 -0.900214E-01 61 -0.143042 -0.135962 62 -0.229776 0.135980 63 -0.735139 -0.844039E-01 64 -0.521344E-02 -0.256070 65 0.632809 0.255938 66 -0.258392 -0.254596 67 0.922927 0.122631 68 -0.759456E-01 -0.636754 69 -0.915948E-01 0.275341 70 0.481118 0.553993 71 -0.463133 0.365848 72 -0.118781 0.165382 73 -0.724660 0.471612 74 -0.781414 0.189152 75 0.473677 0.422563 76 0.343874 -0.579026E-01 77 -0.144041 0.699323 78 0.548904E-01 -0.232151 79 0.637758 0.894449E-01 80 0.101769 -0.659740 81 -0.398786 -0.382173E-01 82 0.473416 0.393493 83 0.231293 -0.656704 84 0.250323 -0.316791 85 -0.590192 0.538435 86 0.356301 -0.266271E-01 87 -0.777414 0.287357 88 -0.627849 -0.617027E-01 89 0.638293 0.150795 90 -0.707858 0.467957 91 0.172893 0.416554E-01 92 -0.349531 -0.441526 93 0.643222 0.106067 94 -0.429225 0.352106 95 0.182119 -0.729841 96 -0.239804 -0.521875 97 -0.672081 -0.231226 98 0.333518 0.492016E-01 99 0.171454 0.479777 100 -0.824885 -0.447247 TEST02 Demonstrate FFTW on a single vector of real data. Transform data to FFT coefficients. Backtransform FFT coefficients to recover data. Compare recovered data to original data. Input Data: 1 0.973681 2 0.240220E-01 3 0.981908 4 0.216642 5 0.821818 6 0.909680 7 0.239914 8 0.789673 9 0.429431 10 0.954728E-01 11 0.296587 12 0.999560 13 0.411235 14 0.236190 15 0.162484 16 0.316333 17 0.698770 18 0.594078 19 0.376568E-01 20 0.374092 21 0.879518 22 0.925253 23 0.678673 24 0.871780 25 0.924814E-01 26 0.769837 27 0.391068 28 0.958934 29 0.113022 30 0.392065 31 0.752446E-01 32 0.181202 33 0.429181E-01 34 0.352204 35 0.398184 36 0.175416 37 0.628468 38 0.323103 39 0.123086 40 0.431907 41 0.172405E-01 42 0.416799 43 0.429412 44 0.797542 45 0.756100 46 0.923003 47 0.404516 48 0.857329 49 0.793078 50 0.513192 51 0.684015 52 0.221609 53 0.152618 54 0.121800 55 0.971444 56 0.931614 57 0.525642 58 0.497661 59 0.828680 60 0.817538 61 0.244107E-01 62 0.521064 63 0.960417 64 0.819593 65 0.823782 66 0.653963 67 0.455106 68 0.869579 69 0.978216 70 0.368876 71 0.703501 72 0.259575E-01 73 0.990806 74 0.754567 75 0.946006E-01 76 0.137754 77 0.561039 78 0.720614 79 0.111078 80 0.266835 81 0.964783E-01 82 0.518500 83 0.848959 84 0.746769 85 0.514890 86 0.188236E-01 87 0.376343E-01 88 0.184968 89 0.526730 90 0.867385 91 0.188841 92 0.218445E-01 93 0.970227 94 0.706812 95 0.568930 96 0.241579 97 0.994006 98 0.622174 99 0.162729 100 0.581629 Output FFT Coefficients: 1 50.3361 0.00000 2 -1.21538 2.06568 3 2.93300 -4.55601 4 0.608665 1.99964 5 2.30107 3.90965 6 2.03093 -4.15750 7 -1.05317 0.381853 8 -1.42371 0.355910 9 -2.62068 1.90142 10 1.60616 -2.55145 11 -2.86816 -1.14881 12 2.94950 -1.44507 13 -1.07645 0.910127 14 -1.98639 1.09924 15 -0.156384 2.65827 16 -1.71938 -3.17820 17 1.06972 -0.342875 18 0.969672 0.340274 19 4.55151 3.93400 20 2.41340 1.07490 21 -3.49632 -0.789209 22 -2.82049 -5.91092 23 0.776194 1.66564 24 -2.75773 0.746604 25 2.30866 -1.85769 26 2.98194 -0.945618E-02 27 4.90873 -1.14466 28 2.08734 2.30351 29 0.861118 -2.46513 30 2.53494 2.91745 31 0.538721 1.47840 32 -0.362026 0.412455 33 -4.05007 -0.133844 34 -1.19832 1.00753 35 -0.166311 2.44789 36 -2.40005 3.60815 37 2.92007 0.118151 38 0.995970 2.17779 39 -0.795998E-01 3.16245 40 1.10390 1.20593 41 0.872069 3.66247 42 -0.730354 1.64738 43 -0.354560 -0.386516 44 0.431241 0.520886 45 4.73975 3.15951 46 -0.677737 -2.76614 47 0.863116 -1.44159 48 2.20280 0.243163 49 3.06910 0.354966 50 1.61679 -3.81407 51 -1.03354 0.00000 Recovered input data divide by N: 1 0.973681 2 0.240220E-01 3 0.981908 4 0.216642 5 0.821818 6 0.909680 7 0.239914 8 0.789673 9 0.429431 10 0.954728E-01 11 0.296587 12 0.999560 13 0.411235 14 0.236190 15 0.162484 16 0.316333 17 0.698770 18 0.594078 19 0.376568E-01 20 0.374092 21 0.879518 22 0.925253 23 0.678673 24 0.871780 25 0.924814E-01 26 0.769837 27 0.391068 28 0.958934 29 0.113022 30 0.392065 31 0.752446E-01 32 0.181202 33 0.429181E-01 34 0.352204 35 0.398184 36 0.175416 37 0.628468 38 0.323103 39 0.123086 40 0.431907 41 0.172405E-01 42 0.416799 43 0.429412 44 0.797542 45 0.756100 46 0.923003 47 0.404516 48 0.857329 49 0.793078 50 0.513192 51 0.684015 52 0.221609 53 0.152618 54 0.121800 55 0.971444 56 0.931614 57 0.525642 58 0.497661 59 0.828680 60 0.817538 61 0.244107E-01 62 0.521064 63 0.960417 64 0.819593 65 0.823782 66 0.653963 67 0.455106 68 0.869579 69 0.978216 70 0.368876 71 0.703501 72 0.259575E-01 73 0.990806 74 0.754567 75 0.946006E-01 76 0.137754 77 0.561039 78 0.720614 79 0.111078 80 0.266835 81 0.964783E-01 82 0.518500 83 0.848959 84 0.746769 85 0.514890 86 0.188236E-01 87 0.376343E-01 88 0.184968 89 0.526730 90 0.867385 91 0.188841 92 0.218445E-01 93 0.970227 94 0.706812 95 0.568930 96 0.241579 97 0.994006 98 0.622174 99 0.162729 100 0.581629 TEST03 Demonstrate FFTW on a 2D complex array NX = 8 NY = 10 Transform data to FFT coefficients. Backtransform FFT coefficients to recover the data. Compare recovered data to original data. Input Data: 1 1 0.545318E-01 0.258293 1 2 0.805046 0.753608 1 3 0.680384 0.334657 1 4 0.782759 0.379286 1 5 0.629299 0.754575 1 6 0.599337 0.779238 1 7 0.655758 0.325480 1 8 0.407993 0.611320E-01 1 9 0.148685 0.933274 1 10 0.418808 0.125508 2 1 0.570772 0.679075 2 2 0.965810 0.998427 2 3 0.374116 0.914448 2 4 0.540120 0.845368 2 5 0.869332 0.595602 2 6 0.558368 0.306166 2 7 0.895105 0.527749 2 8 0.701050E-02 0.696921 2 9 0.840019 0.888598 2 10 0.462461 0.376275 3 1 0.281320 0.566286 3 2 0.935233 0.421991 3 3 0.693841 0.890251 3 4 0.650785 0.583394 3 5 0.122649 0.258079 3 6 0.889845 0.105092 3 7 0.703014 0.375664 3 8 0.552741E-01 0.964192 3 9 0.969819 0.699946 3 10 0.575665 0.689863 4 1 0.906941 0.626084 4 2 0.771151 0.444914 4 3 0.637151 0.804404E-01 4 4 0.373700 0.499279 4 5 0.250257 0.563758 4 6 0.979668 0.763500 4 7 0.870573 0.513275 4 8 0.591698 0.688087 4 9 0.679106 0.181746 4 10 0.727101 0.488724 5 1 0.871001 0.877928 5 2 0.993464 0.494360 5 3 0.180336 0.947585 5 4 0.514809 0.760419 5 5 0.832523 0.244539 5 6 0.262788 0.535207 5 7 0.954044 0.966341 5 8 0.365516 0.509370 5 9 0.685237 0.851363 5 10 0.649901 0.540623 6 1 0.737426 0.341796 6 2 0.371612 0.259441 6 3 0.622918 0.862439 6 4 0.950258 0.545659 6 5 0.728108 0.304794 6 6 0.924647 0.801006 6 7 0.851694E-01 0.242476 6 8 0.915494 0.787891 6 9 0.231498 0.343805E-01 6 10 0.239387 0.938654E-01 7 1 0.813714 0.333992 7 2 0.338711 0.687025 7 3 0.229713 0.207400 7 4 0.702817 0.466033 7 5 0.763617 0.229837E-01 7 6 0.253113E-01 0.841915 7 7 0.259195 0.610713 7 8 0.456669 0.720881 7 9 0.564236 0.551828 7 10 0.167630 0.876450 8 1 0.803998 0.889762 8 2 0.769254 0.535132 8 3 0.129880 0.703929 8 4 0.970353 0.350498 8 5 0.640134 0.118334 8 6 0.942377 0.670616 8 7 0.954493 0.347163 8 8 0.338656 0.446807 8 9 0.803931 0.953324 8 10 0.749233 0.896880 Output FFT Coefficients: 1 1 47.4706 44.1714 1 2 -1.29709 -0.216678 1 3 4.26848 -1.68703 1 4 -0.957250E-01 -2.18838 1 5 -0.165057 -2.16014 1 6 -0.228728E-01 -1.41070 1 7 -1.43513 7.85926 1 8 0.226682 -0.633872 1 9 0.971368 -1.30371 1 10 0.475820 3.30200 2 1 0.581987 -0.993416 2 2 0.113373 -1.39865 2 3 -5.15959 -0.539754 2 4 4.06299 1.64963 2 5 -2.52568 -0.834536 2 6 1.52976 0.569809 2 7 -2.66660 1.75375 2 8 -2.83790 2.50964 2 9 1.30672 -1.48957 2 10 -1.63271 2.60059 3 1 1.63329 2.55883 3 2 -1.87626 -2.88432 3 3 -1.13380 -0.172013 3 4 0.266049 -2.08451 3 5 0.919976 1.44162 3 6 -0.224841 2.83895 3 7 -4.85021 -0.943161 3 8 1.61508 -1.00298 3 9 -1.79151 4.34047 3 10 -1.20254 2.29393 4 1 -0.725670 -2.99769 4 2 -0.855391 -4.94086 4 3 -0.404669 0.373890E-01 4 4 0.858978 -1.82782 4 5 0.771954 2.03851 4 6 -4.61939 -4.97376 4 7 1.07273 -0.382888 4 8 -1.26006 -1.68972 4 9 0.627794 2.42898 4 10 -3.52714 -3.01133 5 1 -4.08801 0.442135 5 2 -0.542734 -0.670458 5 3 -2.25974 -1.16867 5 4 -0.556143 -1.52310 5 5 -0.662111 -1.78594 5 6 1.01199 0.841870 5 7 -4.27613 -0.899329 5 8 0.744588 -0.973060 5 9 -1.84576 -0.488463 5 10 2.48834 1.22284 6 1 -2.36495 -6.16362 6 2 0.226408 -3.95365 6 3 -3.91113 0.735705 6 4 1.99225 2.79037 6 5 2.52257 3.59733 6 6 -0.911486 0.900635 6 7 4.98526 -6.00303 6 8 -3.89523 0.160210E-01 6 9 -2.61308 2.85970 6 10 -0.486459 -0.351793 7 1 0.953038 -1.44122 7 2 3.77688 0.525044E-01 7 3 2.23786 0.398956 7 4 3.05312 0.240376 7 5 -1.37321 0.648672 7 6 -1.19876 3.95100 7 7 -2.98449 0.384097E-01 7 8 -1.80473 -1.10924 7 9 4.16374 -0.836770 7 10 -3.56870 -3.61067 8 1 -1.99943 2.06399 8 2 -2.35654 2.00119 8 3 1.92655 0.604407 8 4 -2.08536 -4.55805 8 5 2.40876 -3.84863 8 6 -2.32668 1.34223 8 7 -3.77021 -0.832905 8 8 -4.01714 -7.66847 8 9 0.338295 0.454195 8 10 -1.03264 2.72067 Recovered input data divided by NX * NY: 1 1 0.545318E-01 0.258293 1 2 0.805046 0.753608 1 3 0.680384 0.334657 1 4 0.782759 0.379286 1 5 0.629299 0.754575 1 6 0.599337 0.779238 1 7 0.655758 0.325480 1 8 0.407993 0.611320E-01 1 9 0.148685 0.933274 1 10 0.418808 0.125508 2 1 0.570772 0.679075 2 2 0.965810 0.998427 2 3 0.374116 0.914448 2 4 0.540120 0.845368 2 5 0.869332 0.595602 2 6 0.558368 0.306166 2 7 0.895105 0.527749 2 8 0.701050E-02 0.696921 2 9 0.840019 0.888598 2 10 0.462461 0.376275 3 1 0.281320 0.566286 3 2 0.935233 0.421991 3 3 0.693841 0.890251 3 4 0.650785 0.583394 3 5 0.122649 0.258079 3 6 0.889845 0.105092 3 7 0.703014 0.375664 3 8 0.552741E-01 0.964192 3 9 0.969819 0.699946 3 10 0.575665 0.689863 4 1 0.906941 0.626084 4 2 0.771151 0.444914 4 3 0.637151 0.804404E-01 4 4 0.373700 0.499279 4 5 0.250257 0.563758 4 6 0.979668 0.763500 4 7 0.870573 0.513275 4 8 0.591698 0.688087 4 9 0.679106 0.181746 4 10 0.727101 0.488724 5 1 0.871001 0.877928 5 2 0.993464 0.494360 5 3 0.180336 0.947585 5 4 0.514809 0.760419 5 5 0.832523 0.244539 5 6 0.262788 0.535207 5 7 0.954044 0.966341 5 8 0.365516 0.509370 5 9 0.685237 0.851363 5 10 0.649901 0.540623 6 1 0.737426 0.341796 6 2 0.371612 0.259441 6 3 0.622918 0.862439 6 4 0.950258 0.545659 6 5 0.728108 0.304794 6 6 0.924647 0.801006 6 7 0.851694E-01 0.242476 6 8 0.915494 0.787891 6 9 0.231498 0.343805E-01 6 10 0.239387 0.938654E-01 7 1 0.813714 0.333992 7 2 0.338711 0.687025 7 3 0.229713 0.207400 7 4 0.702817 0.466033 7 5 0.763617 0.229837E-01 7 6 0.253113E-01 0.841915 7 7 0.259195 0.610713 7 8 0.456669 0.720881 7 9 0.564236 0.551828 7 10 0.167630 0.876450 8 1 0.803998 0.889762 8 2 0.769254 0.535132 8 3 0.129880 0.703929 8 4 0.970353 0.350498 8 5 0.640134 0.118334 8 6 0.942377 0.670616 8 7 0.954493 0.347163 8 8 0.338656 0.446807 8 9 0.803931 0.953324 8 10 0.749233 0.896880 TEST04 Demonstrate FFTW on a 2D real array NX = 8 NY = 10 Transform data to FFT coefficients. Backtransform FFT coefficients to recover the data. Compare recovered data to original data. Input Data: 1 1 0.973953 1 2 0.149984 1 3 0.175709 1 4 0.286096 1 5 0.388496 1 6 0.264850 1 7 0.497254 1 8 0.747112 1 9 0.821385 1 10 0.403999 2 1 0.850591 2 2 0.735596 2 3 0.591542E-01 2 4 0.389302 2 5 0.832460 2 6 0.965255 2 7 0.439498 2 8 0.245125E-01 2 9 0.492383E-01 2 10 0.164911 3 1 0.222676 3 2 0.407031 3 3 0.211407 3 4 0.784716 3 5 0.939741 3 6 0.873350 3 7 0.662148 3 8 0.810006 3 9 0.141835 3 10 0.572882 4 1 0.416594 4 2 0.591122 4 3 0.618420 4 4 0.409836 4 5 0.423703 4 6 0.711084 4 7 0.313701 4 8 0.221051 4 9 0.100551 4 10 0.373414E-01 5 1 0.258342 5 2 0.541094 5 3 0.455799 5 4 0.325352 5 5 0.754919 5 6 0.556044 5 7 0.583246 5 8 0.229266 5 9 0.363488 5 10 0.643787E-01 6 1 0.737988 6 2 0.907789 6 3 0.476964 6 4 0.429054 6 5 0.204504 6 6 0.470630 6 7 0.440781 6 8 0.656872 6 9 0.463409 6 10 0.688094 7 1 0.610866E-01 7 2 0.511672 7 3 0.314705E-01 7 4 0.567219 7 5 0.914850 7 6 0.160056 7 7 0.951351E-01 7 8 0.898839 7 9 0.278572 7 10 0.776118 8 1 0.654262 8 2 0.272608 8 3 0.362849 8 4 0.207443 8 5 0.293518 8 6 0.765356 8 7 0.621275 8 8 0.190895E-01 8 9 0.924687 8 10 0.444319 Output FFT Coefficients: 1 1 37.1570 0.00000 1 2 -1.96492 -0.301012 1 3 3.64006 0.447284 1 4 0.949926 -2.52674 1 5 0.136741 -0.438114 1 6 -0.925666 0.00000 1 7 0.136741 0.438114 1 8 0.949926 2.52674 1 9 3.64006 -0.447284 1 10 -1.96492 0.301012 2 1 0.404684 -0.137480 2 2 -1.87691 4.89124 2 3 0.360472 -0.316228 2 4 0.869243 -0.193769 2 5 1.21930 -1.54690 2 6 1.73727 0.662538E-01 2 7 1.31105 0.509016E-01 2 8 0.788743 -0.432522 2 9 2.00562 -3.53941 2 10 2.81343 0.426382 3 1 -1.08004 -1.57780 3 2 1.09400 -0.191333 3 3 0.319420 -2.55854 3 4 -1.58686 -1.44187 3 5 2.12028 -0.575728 3 6 4.50739 1.92774 3 7 1.57499 2.10754 3 8 0.105071 -1.71609 3 9 0.745459 0.218677 3 10 1.68563 -1.36983 4 1 0.749138 2.52406 4 2 0.326622 1.46638 4 3 -1.29942 -0.823034 4 4 -0.112268 -0.440676 4 5 1.49233 1.63261 4 6 -1.12708 0.591474 4 7 0.117009 -0.335776 4 8 2.95928 -1.00367 4 9 -2.11602 0.261833 4 10 3.68972 -1.37296 5 1 0.366162 0.00000 5 2 -2.33125 1.94440 5 3 -3.32635 2.16511 5 4 2.75359 -0.993050 5 5 -2.36024 2.02886 5 6 -1.27143 0.00000 5 7 -2.36024 -2.02886 5 8 2.75359 0.993050 5 9 -3.32635 -2.16511 5 10 -2.33125 -1.94440 Recovered input data divided by NX * NY: 1 1 0.973953 1 2 0.149984 1 3 0.175709 1 4 0.286096 1 5 0.388496 1 6 0.264850 1 7 0.497254 1 8 0.747112 1 9 0.821385 1 10 0.403999 2 1 0.850591 2 2 0.735596 2 3 0.591542E-01 2 4 0.389302 2 5 0.832460 2 6 0.965255 2 7 0.439498 2 8 0.245125E-01 2 9 0.492383E-01 2 10 0.164911 3 1 0.222676 3 2 0.407031 3 3 0.211407 3 4 0.784716 3 5 0.939741 3 6 0.873350 3 7 0.662148 3 8 0.810006 3 9 0.141835 3 10 0.572882 4 1 0.416594 4 2 0.591122 4 3 0.618420 4 4 0.409836 4 5 0.423703 4 6 0.711084 4 7 0.313701 4 8 0.221051 4 9 0.100551 4 10 0.373414E-01 5 1 0.258342 5 2 0.541094 5 3 0.455799 5 4 0.325352 5 5 0.754919 5 6 0.556044 5 7 0.583246 5 8 0.229266 5 9 0.363488 5 10 0.643787E-01 6 1 0.737988 6 2 0.907789 6 3 0.476964 6 4 0.429054 6 5 0.204504 6 6 0.470630 6 7 0.440781 6 8 0.656872 6 9 0.463409 6 10 0.688094 7 1 0.610866E-01 7 2 0.511672 7 3 0.314705E-01 7 4 0.567219 7 5 0.914850 7 6 0.160056 7 7 0.951351E-01 7 8 0.898839 7 9 0.278572 7 10 0.776118 8 1 0.654262 8 2 0.272608 8 3 0.362849 8 4 0.207443 8 5 0.293518 8 6 0.765356 8 7 0.621275 8 8 0.190895E-01 8 9 0.924687 8 10 0.444319 fftw_test(): Normal end of execution. 6 October 2025 6:18:19.943 PM