27 February 2023 2:54:53.090 PM FFTPACK51_TEST(): FORTRAN90 version Test FFTPACK51. cfft1_test For complex double precision fast Fourier transforms, 1D, CFFT1I initializes the transform, CFFT1F does a forward transform; CFFT1B does a backward transform. The number of data items is N = 4096 LENSAV = 8208 LENWRK = 8192 The original data: 1: -0.122847 -0.187108E-01 2: 0.779210 -0.449592 3: 0.386667 0.157388E-01 4: -0.732450 0.531549 5: 0.297286 0.404264 6: 0.289634 -0.752138 7: 0.171588 0.682045 8: 0.564249 0.401782 ........ .............. .............. 4096: 0.278509E-01 0.326458 The FFT coefficients: 1: -0.779161E-03 -0.169767E-02 2: 0.269171E-02 0.171117E-01 3: -0.985015E-03 -0.557189E-02 4: 0.783426E-02 0.472466E-02 5: -0.128650E-01 0.158052E-02 6: 0.131372E-02 0.200234E-01 7: 0.124140E-01 0.197644E-02 8: 0.107536E-02 -0.101186E-02 ........ .............. .............. 4096: -0.611606E-02 0.546467E-02 The retrieved data: 1: -0.122847 -0.187108E-01 2: 0.779210 -0.449592 3: 0.386667 0.157388E-01 4: -0.732450 0.531549 5: 0.297286 0.404264 6: 0.289634 -0.752138 7: 0.171588 0.682045 8: 0.564249 0.401782 ........ .............. .............. 4096: 0.278509E-01 0.326458 cfft2_test For complex double precision fast Fourier transforms, 2D, CFFT2I initializes the transform, CFFT2F does a forward transform; CFFT2B does a backward transform. The data is stored in an L by M array, with L = 32 M = 64 LENSAV = 211 LENWRK = 4096 Part of the original data: Col: 1 2 3 4 Row --- 1:-0.123 -0.187E-01-0.599 -0.535 -0.952 -0.329E-01 0.724 0.229 2: 0.779 -0.450 0.319 0.322E-01-0.180 -0.134E-01 0.528 0.310E-01 3: 0.387 0.157E-01-0.968 -0.421E-01-0.223 0.749 -0.172 0.136 4:-0.732 0.532 0.807 -0.495 0.458 -0.518E-01 0.620 0.644 5: 0.297 0.404 0.802 -0.196 0.864 0.493 -0.574 0.172 Col: 5 Row --- 1:-0.568E-02-0.749 2:-0.400E-01 0.990 3: 0.810 0.212 4:-0.847E-01 0.733 5: 0.378 0.489 Part of the FFT coefficients: Col: 1 2 3 4 Row --- 1:-0.117E-01 0.704E-02 0.361E-02 0.952E-04-0.193E-01-0.441E-02 0.280E-01 0.525E-02 2: 0.155E-01 0.140E-02-0.596E-02 0.615E-02 0.320E-02-0.133E-02 0.990E-02 0.117E-01 3: 0.926E-02 0.659E-02 0.139E-01 0.586E-02 0.120E-02-0.142E-02-0.849E-02-0.104E-02 4: 0.978E-02 0.587E-02-0.220E-02 0.114E-03-0.399E-03 0.994E-02-0.288E-02 0.786E-02 5:-0.116E-01 0.816E-02-0.604E-02-0.210E-01-0.244E-01 0.487E-02 0.996E-02-0.532E-02 Col: 5 Row --- 1:-0.581E-02-0.437E-02 2:-0.379E-02-0.249E-01 3: 0.354E-02-0.919E-02 4:-0.268E-01 0.921E-02 5:-0.143E-02 0.837E-02 Part of the retrieved data: Col: 1 2 3 4 Row --- 1:-0.123 -0.187E-01-0.599 -0.535 -0.952 -0.329E-01 0.724 0.229 2: 0.779 -0.450 0.319 0.322E-01-0.180 -0.134E-01 0.528 0.310E-01 3: 0.387 0.157E-01-0.968 -0.421E-01-0.223 0.749 -0.172 0.136 4:-0.732 0.532 0.807 -0.495 0.458 -0.518E-01 0.620 0.644 5: 0.297 0.404 0.802 -0.196 0.864 0.493 -0.574 0.172 Col: 5 Row --- 1:-0.568E-02-0.749 2:-0.400E-01 0.990 3: 0.810 0.212 4:-0.847E-01 0.733 5: 0.378 0.489 cfftm_test For complex double precision fast Fourier transforms, 1D, multiple CFFTMI initializes the transform, CFFTMF does a forward transform; CFFTMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENC = 192 LENSAV = 73 LENWRK = 384 Part of the original data: Col: 1 2 3 4 Row --- 1:-0.123 -0.187E-01-0.599 -0.535 -0.952 -0.329E-01 0.724 0.229 2: 0.779 -0.450 0.319 0.322E-01-0.180 -0.134E-01 0.528 0.310E-01 3: 0.387 0.157E-01-0.968 -0.421E-01-0.223 0.749 -0.172 0.136 4:-0.732 0.532 0.807 -0.495 0.458 -0.518E-01 0.620 0.644 5: 0.297 0.404 0.802 -0.196 0.864 0.493 -0.574 0.172 Col: 5 Row --- 1:-0.568E-02-0.749 2:-0.400E-01 0.990 3: 0.810 0.212 4:-0.847E-01 0.733 5: 0.378 0.489 Part of the FFT coefficients: Col: 1 2 3 4 Row --- 1:-0.133 0.349E-01-0.103 0.582E-01-0.567E-01 0.170 0.107 -0.209E-01 2: 0.273E-01-0.109 -0.513E-01-0.119 -0.712E-01 0.209E-01 0.751E-01 0.101 3:-0.785E-01-0.728E-01-0.671E-01-0.115 0.525E-01-0.768E-01 0.726E-01 0.318E-02 4: 0.127E-02 0.821E-02 0.800E-02 0.736E-01-0.845E-01-0.264E-01 0.978E-01 0.114 5:-0.601E-01-0.134 -0.145 -0.203E-01-0.552E-01-0.110 -0.839E-01 0.765E-01 Col: 5 Row --- 1: 0.244E-01 0.171 2: 0.224 0.133 3: 0.176 0.137 4:-0.146 -0.957E-01 5:-0.420E-01-0.452E-01 Part of the retrieved data: Col: 1 2 3 4 Row --- 1:-0.123 -0.187E-01-0.599 -0.535 -0.952 -0.329E-01 0.724 0.229 2: 0.779 -0.450 0.319 0.322E-01-0.180 -0.134E-01 0.528 0.310E-01 3: 0.387 0.157E-01-0.968 -0.421E-01-0.223 0.749 -0.172 0.136 4:-0.732 0.532 0.807 -0.495 0.458 -0.518E-01 0.620 0.644 5: 0.297 0.404 0.802 -0.196 0.864 0.493 -0.574 0.172 Col: 5 Row --- 1:-0.568E-02-0.749 2:-0.400E-01 0.990 3: 0.810 0.212 4:-0.847E-01 0.733 5: 0.378 0.489 cosq1_test For real double precision fast cosine transforms, 1D, COSQ1I initializes the transform, COSQ1F does a forward transform; COSQ1B does a backward transform. The number of data items is N = 4096 LENSAV = 8208 LENWRK = 4096 The original data: 1: 0.737936 2: 0.484767 3: 0.368850 4: 0.977458 5: 0.419175 6: 0.868944 7: 0.177599 8: 0.792780 ........ .............. 4096: 0.975110 The FFT coefficients: 1: 0.644698 2: -0.209079 3: 0.127648 4: -0.877479E-01 5: 0.684699E-01 6: -0.575846E-01 7: 0.542887E-01 8: -0.545289E-01 ........ .............. 4096: -0.499616E-02 The retrieved data: 1: 0.737936 2: 0.484767 3: 0.368850 4: 0.977458 5: 0.419175 6: 0.868944 7: 0.177599 8: 0.792780 ........ .............. 4096: 0.975110 cosqm_test For real double precision fast cosine transform, 1D, multiple COSQMI initializes the transform, COSQMF does a forward transform; COSQMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENR = 192 LENSAV = 73 LENWRK = 192 Part of the original data: Col 1 2 3 4 5 Row 1: 0.326221 0.353734 0.330148 0.867982E-01 0.174481 2: 0.392164 0.882972 0.544990E-02 0.944700 0.263478 3: 0.144760 0.351690 0.698796 0.143779 0.170660 4: 0.874598 0.744943 0.495896 0.695986 0.877654 5: 0.228505 0.906969 0.255979 0.639933 0.903450 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.605190 0.701744 0.591664 0.604937 0.745287 2: -0.198977 -0.273345 -0.240936 -0.181433 -0.255449 3: 0.918723E-01 0.147430 0.121858 0.304431 0.103909 4: -0.126237 -0.152192E-01 -0.234850 -0.133084 -0.177135 5: 0.863925E-01 0.922921E-01 0.140007 0.547815E-01 0.448155E-01 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.326221 0.353734 0.330148 0.867982E-01 0.174481 2: 0.392164 0.882972 0.544990E-02 0.944700 0.263478 3: 0.144760 0.351690 0.698796 0.143779 0.170660 4: 0.874598 0.744943 0.495896 0.695986 0.877654 5: 0.228505 0.906969 0.255979 0.639933 0.903450 cost1_test For real double precision fast cosine transforms, 1D, COST1I initializes the transform, COST1F does a forward transform; COST1B does a backward transform. The number of data items is N = 4096 LENSAV = 8208 LENWRK = 4095 The original data: 1: 0.763416 2: 0.817821 3: 0.656025 4: 0.163102 5: 0.966735 6: 0.518736 7: 0.892341 8: 0.618194 ........ .............. 4096: 0.165555 The FFT coefficients: 1: 0.501823 2: 0.593382E-02 3: 0.560877E-02 4: -0.318946E-03 5: 0.213320E-02 6: -0.845874E-02 7: -0.116125E-01 8: -0.722797E-03 ........ .............. 4096: 0.369143E-02 The retrieved data: 1: 0.763416 2: 0.817821 3: 0.656025 4: 0.163102 5: 0.966735 6: 0.518736 7: 0.892341 8: 0.618194 ........ .............. 4096: 0.165555 costm_test For real double precision fast cosine transforms, 1D, multiple COSTMI initializes the transform, COSTMF does a forward transform; COSTMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENR = 192 LENSAV = 73 LENWRK = 198 Part of the original data: Col 1 2 3 4 5 Row 1: 0.361880 0.385711 0.735094 0.607577E-01 0.944024 2: 0.436256 0.477103 0.113288 0.771392 0.266956 3: 0.637679 0.683169 0.358560 0.339868 0.531494 4: 0.167146 0.976119 0.301351 0.933216 0.680316 5: 0.820019 0.365289 0.439241 0.445335 0.159879 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.548263 0.509267 0.453471 0.555887 0.488542 2: 0.437925E-01 0.236208E-01 0.498108E-01 -0.606631E-01 -0.694879E-01 3: -0.134767 0.201069E-01 -0.366756E-01 -0.107112E-01 0.709520E-01 4: 0.258921E-02 0.792622E-01 -0.467557E-01 0.320732E-01 -0.277046E-01 5: -0.440552E-01 0.449193E-01 0.271757E-01 0.246350E-01 0.157347E-01 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.361880 0.385711 0.735094 0.607577E-01 0.944024 2: 0.436256 0.477103 0.113288 0.771392 0.266956 3: 0.637679 0.683169 0.358560 0.339868 0.531494 4: 0.167146 0.976119 0.301351 0.933216 0.680316 5: 0.820019 0.365289 0.439241 0.445335 0.159879 rfft1_test For real double precision fast cosine transforms, 1D, RFFT1I initializes the transform, RFFT1F does a forward transform; RFFT1B does a backward transform. The number of data items is N = 4096 LENSAV = 4112 LENWRK = 4096 The original data: 1: 0.337108 2: 0.544077 3: 0.806128 4: 0.899528 5: 0.238958 6: 0.248395 7: 0.303235 8: 0.946469 ........ .............. 4096: 0.175082 The FFT coefficients: 1: 0.497057 2: -0.359367E-02 3: -0.629880E-02 4: -0.208054E-02 5: -0.701333E-02 6: -0.689451E-02 7: -0.794234E-03 8: 0.149220E-01 ........ .............. 4096: 0.391333E-02 The retrieved data: 1: 0.337108 2: 0.544077 3: 0.806128 4: 0.899528 5: 0.238958 6: 0.248395 7: 0.303235 8: 0.946469 ........ .............. 4096: 0.175082 rfft2_test For real double precision fast Fourier transform, 2D, RFFT2I initializes the transform, RFFT2F does a forward transform; RFFT2B does a backward transform. The L by M data is stored in an LDIM by M array, with L = 32 LDIM = 34 M = 64 LENSAV = 253 LENWRK = 4352 Part of the original data: Col 1 2 3 4 5 Row 1: 0.238124 0.681188 0.446291 0.121932 0.373412 2: 0.545207 0.858246 0.813613 0.452716 0.885059 3: 0.684676 0.365204 0.833042 0.187331 0.197623 4: 0.115850 0.779985 0.682775 0.659456 0.819863 5: 0.986500 0.117819 0.699314 0.317470 0.870749 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.497239 0.432368E-02 0.781049E-02 0.108267E-01 -0.844128E-02 2: -0.711843E-02 0.228316E-02 0.538032E-03 0.126492E-02 0.972551E-02 3: 0.794882E-02 0.830705E-02 0.538122E-02 0.887428E-03 0.286063E-02 4: 0.387364E-02 0.706130E-03 -0.374291E-02 0.176621E-02 -0.211541E-02 5: 0.868816E-02 -0.560530E-02 0.183458E-02 0.649285E-02 0.317254E-02 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.238124 0.681188 0.446291 0.121932 0.373412 2: 0.545207 0.858246 0.813613 0.452716 0.885059 3: 0.684676 0.365204 0.833042 0.187331 0.197623 4: 0.115850 0.779985 0.682775 0.659456 0.819863 5: 0.986500 0.117819 0.699314 0.317470 0.870749 rfftm_test For real double precision fast Fourier transform, 1D, multiple RFFTMI initializes the transform, RFFTMF does a forward transform; RFFTMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENR = 192 LENSAV = 41 LENWRK = 192 Part of the original data: Col 1 2 3 4 5 Row 1: 0.680685 0.159112 0.323256 0.136400 0.371566 2: 0.204613 0.812912 0.785098 0.269068 0.770997 3: 0.615866E-01 0.947107 0.507231E-01 0.389190 0.829146 4: 0.836418 0.736006 0.661133 0.302521 0.951791 5: 0.484021 0.853041E-01 0.732193E-01 0.519642 0.352129 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.546084 0.475009 0.463162 0.498456 0.514525 2: -0.190175E-01 0.583555E-01 -0.350929E-01 -0.488765E-01 0.285993E-01 3: 0.258280E-01 -0.400706E-01 0.587173E-01 0.212335E-01 -0.516825E-01 4: 0.449961E-01 0.592331E-01 -0.790259E-02 0.342210E-01 0.643116E-01 5: -0.511191E-01 0.112880 0.131767E-01 -0.518489E-01 0.474461E-01 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.680685 0.159112 0.323256 0.136400 0.371566 2: 0.204613 0.812912 0.785098 0.269068 0.770997 3: 0.615866E-01 0.947107 0.507231E-01 0.389190 0.829146 4: 0.836418 0.736006 0.661133 0.302521 0.951791 5: 0.484021 0.853041E-01 0.732193E-01 0.519642 0.352129 sinq1_test For real double precision fast sine transforms, 1D, SINQ1I initializes the transform, SINQ1F does a forward transform; SINQ1B does a backward transform. The number of data items is N = 4096 LENSAV = 8208 LENWRK = 4096 The original data: 1: 0.240014 2: 0.517263 3: 0.903212 4: 0.648514 5: 0.436967 6: 0.258926 7: 0.220738 8: 0.647539 ........ .............. 4096: 0.842412 The FFT coefficients: 1: 0.631546 2: 0.210554 3: 0.123878 4: 0.890087E-01 5: 0.784532E-01 6: 0.479492E-01 7: 0.621403E-01 8: 0.327160E-01 ........ .............. 4096: 0.101098E-01 The retrieved data: 1: 0.240014 2: 0.517263 3: 0.903212 4: 0.648514 5: 0.436967 6: 0.258926 7: 0.220738 8: 0.647539 ........ .............. 4096: 0.842412 sinqm_test For real double precision fast sine transforms, 1D, multiple SINQMI initializes the transform, SINQMF does a forward transform; SINQMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENR = 192 LENSAV = 73 LENWRK = 192 Part of the original data: Col 1 2 3 4 5 Row 1: 0.705057 0.252053 0.220543 0.991876E-01 0.946641 2: 0.649985 0.634122 0.827292 0.270506E-01 0.994942 3: 0.289632 0.729503 0.936474 0.251492 0.511985 4: 0.815391 0.885281 0.992438E-01 0.901585 0.892549 5: 0.172245 0.486799E-01 0.931271 0.393254 0.550086 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.699672 0.605454 0.673417 0.634784 0.526219 2: 0.215518 0.287700 0.186429 0.270971 0.145899 3: 0.152855 0.835073E-01 0.140519 0.969026E-01 0.290470 4: 0.857306E-01 0.126968 0.208134 -0.562076E-03 0.984646E-01 5: 0.400112E-01 0.108284 0.784946E-01 0.155295 0.226368 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.705057 0.252053 0.220543 0.991876E-01 0.946641 2: 0.649985 0.634122 0.827292 0.270506E-01 0.994942 3: 0.289632 0.729503 0.936474 0.251492 0.511985 4: 0.815391 0.885281 0.992438E-01 0.901585 0.892549 5: 0.172245 0.486799E-01 0.931271 0.393254 0.550086 sint1_test For real double precision fast sine transforms, 1D, SINT1I initializes the transform, SINT1F does a forward transform; SINT1B does a backward transform. The number of data items is N = 4096 LENSAV = 6160 LENWRK = 8194 The original data: 1: 0.761623 2: 0.179024 3: 0.178588 4: 0.590455 5: 0.831837 6: 0.138431 7: 0.865944 8: 0.752087 ........ .............. 4096: 0.720257 The FFT coefficients: 1: 0.639590 2: 0.148270E-01 3: 0.210031 4: -0.817690E-02 5: 0.118576 6: 0.253899E-02 7: 0.884792E-01 8: -0.625379E-02 ........ .............. 4096: -0.528640E-02 The retrieved data: 1: 0.761623 2: 0.179024 3: 0.178588 4: 0.590455 5: 0.831837 6: 0.138431 7: 0.865944 8: 0.752087 ........ .............. 4096: 0.720257 sintm_test For real double precision fast sine transforms, 1D, multiple SINTMI initializes the transform, SINTMF does a forward transform; SINTMB does a backward transform. The number of sequences is LOT = 6 The length of each sequence is N = 32 LENR = 192 LENSAV = 57 LENWRK = 408 Part of the original data: Col 1 2 3 4 5 Row 1: 0.920453 0.529062 0.798450 0.173170 0.443793 2: 0.540265 0.325185 0.865279E-01 0.453005 0.718374E-01 3: 0.352259 0.616604 0.836505 0.471815 0.312359 4: 0.628881 0.432801 0.579809 0.703357 0.170142 5: 0.531685 0.392206 0.564223 0.790070 0.380093 Part of the FFT coefficients: Col 1 2 3 4 5 Row 1: 0.719191 0.638241 0.553472 0.578696 0.631735 2: 0.742657E-01 -0.148723 -0.619796E-01 0.165348 -0.373002E-01 3: 0.361661 0.298553 0.167730 0.144791 0.178939 4: 0.931217E-02 0.960280E-01 0.372235E-01 -0.330913E-01 -0.653760E-01 5: 0.481745E-01 0.234685 0.260029 0.959706E-01 0.149889E-01 Part of the retrieved data: Col 1 2 3 4 5 Row 1: 0.920453 0.529062 0.798450 0.173170 0.443793 2: 0.540265 0.325185 0.865279E-01 0.453005 0.718374E-01 3: 0.352259 0.616604 0.836505 0.471815 0.312359 4: 0.628881 0.432801 0.579809 0.703357 0.170142 5: 0.531685 0.392206 0.564223 0.790070 0.380093 FFTPACK51_TEST Normal end of execution. 27 February 2023 2:54:53.101 PM