program main !*****************************************************************************80 ! !! disk01_rule_test() tests disk01_rule(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 April 2016 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'disk01_rule_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test disk01_rule().' call test01 ( ) ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'disk01_rule_test():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop 0 end subroutine test01 ( ) !*****************************************************************************80 ! !! TEST01 tests DISK01_RULE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 March 2014 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: nr = 4 integer, parameter :: nt = 8 real ( kind = rk ) area integer e(2) integer e1 integer e2 real ( kind = rk ) exact integer i integer j real ( kind = rk ) q real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r(nr) real ( kind = rk ) s real ( kind = rk ) t(nt) real ( kind = rk ) w(nr) real ( kind = rk ) x real ( kind = rk ) y write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' DISK01_RULE can compute a rule Q(f) for the unit disk' write ( *, '(a)' ) ' using NT equally spaced angles and NR radial distances.' write ( *, '(a)' ) '' write ( *, '(a,i4)' ) ' NT = ', nt write ( *, '(a,i4)' ) ' NR = ', nr write ( *, '(a)' ) '' write ( *, '(a)' ) ' Estimate integrals I(f) where f = x^e(1) * y^e(2).' ! ! Compute the quadrature rule. ! call disk01_rule ( nr, nt, w, r, t ) ! ! Apply it to integrands. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' E(1) E(2) I(f) Q(f)' write ( *, '(a)' ) ' ' ! ! Specify a monomial. ! do e1 = 0, 6, 2 e(1) = e1 do e2 = e1, 6, 2 e(2) = e2 s = 0.0D+00 do j = 1, nt do i = 1, nr x = r(i) * cos ( t(j) ) y = r(i) * sin ( t(j) ) s = s + w(i) * x ** e(1) * y ** e(2) end do end do area = r8_pi q = r8_pi * s call disk01_monomial_integral ( e, exact ) write ( *, '(3x,i2,3x,i2,2x,g14.6,2x,g14.6)' ) e(1), e(2), exact, q end do end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end