subroutine cube01_monomial_integral ( e, integral ) !*****************************************************************************80 ! !! cube01_monomial_integral(): integral over interior of unit cube in 3D. ! ! Discussion: ! ! The integration region is ! ! 0 <= X <= 1, ! 0 <= Y <= 1, ! 0 <= Z <= 1. ! ! The monomial is F(X,Y,Z) = X^E(1) * Y^E(2) * Z^E(3). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 January 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer E(3), the exponents. ! Each exponent must be nonnegative. ! ! Output, real ( kind = rk ) INTEGRAL, the integral. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 3 integer e(m) integer i real ( kind = rk ) integral if ( any ( e(1:m) < 0 ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CUBE01_MONOMIAL_INTEGRAL - Fatal error!' write ( *, '(a)' ) ' All exponents must be nonnegative.' stop 1 end if integral = 1.0D+00 do i = 1, m integral = integral / real ( e(i) + 1, kind = rk ) end do return end subroutine cube01_sample ( n, x ) !*****************************************************************************80 ! !! cube01_sample() samples the interior of the unit cube in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 January 2014 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Russell Cheng, ! Random Variate Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley, 1998, pages 168. ! ! Reuven Rubinstein, ! Monte Carlo Optimization, Simulation, and Sensitivity ! of Queueing Networks, ! Krieger, 1992, ! ISBN: 0894647644, ! LC: QA298.R79. ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Output, real ( kind = rk ) X(3,N), the points. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 3 integer n real ( kind = rk ) x(m,n) call random_number ( harvest = x(1:m,1:n) ) return end function cube01_volume ( ) !*****************************************************************************80 ! !! cube01_volume(): volume of the unit cube in 3D. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 January 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) CUBE01_VOLUME, the volume. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cube01_volume cube01_volume = 1.0D+00 return end subroutine i4vec_uniform_ab ( n, a, b, x ) !*****************************************************************************80 ! !! i4vec_uniform_ab() returns a scaled pseudorandom I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! The pseudorandom numbers should be scaled to be uniformly distributed ! between A and B. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 November 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the dimension of the vector. ! ! Input, integer A, B, the limits of the interval. ! ! Output, integer X(N), a vector of numbers between A and B. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a integer b integer i real r integer value integer x(n) do i = 1, n call random_number ( harvest = r ) ! ! Scale R to lie between A-0.5 and B+0.5. ! r = ( 1.0E+00 - r ) * ( real ( min ( a, b ) ) - 0.5E+00 ) & + r * ( real ( max ( a, b ) ) + 0.5E+00 ) ! ! Use rounding to convert R to an integer between A and B. ! value = nint ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) x(i) = value end do return end subroutine monomial_value ( m, n, e, x, value ) !*****************************************************************************80 ! !! monomial_value() evaluates a monomial. ! ! Discussion: ! ! This routine evaluates a monomial of the form ! ! product ( 1 <= i <= m ) x(i)^e(i) ! ! where the exponents are nonnegative integers. Note that ! if the combination 0^0 is encountered, it should be treated ! as 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 May 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points at which the ! monomial is to be evaluated. ! ! Input, integer E(M), the exponents. ! ! Input, real ( kind = rk ) X(M,N), the point coordinates. ! ! Output, real ( kind = rk ) VALUE(N), the value of the monomial. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer e(m) integer i real ( kind = rk ) value(n) real ( kind = rk ) x(m,n) value(1:n) = 1.0D+00 do i = 1, m if ( 0 /= e(i) ) then value(1:n) = value(1:n) * x(i,1:n) ** e(i) end if end do return end