subroutine jyndd ( n, x, bjn, djn ) !*****************************************************************************80 ! !! jyndd() evaluates a Bessel function Jn(x) and derivative. ! ! Licensing: ! ! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However, ! they give permission to incorporate this routine into a user program ! provided that the copyright is acknowledged. ! ! Modified: ! ! 17 June 2025 ! ! Author: ! ! Original Fortran77 version by Shanjie Zhang, Jianming Jin. ! This version by John Burkardt. ! ! Reference: ! ! Shanjie Zhang, Jianming Jin, ! Computation of Special Functions, ! Wiley, 1996, ! ISBN: 0-471-11963-6, ! LC: QA351.C45. ! ! Input: ! ! integer N, the order. ! ! real ( kind = rk8 ) X, the argument. ! ! Output: ! ! real ( kind = rk8 ) BJN, DJN, the values of Jn(x), Jn'(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) bj(102) real ( kind = rk8 ) bjn real ( kind = rk8 ) bs real ( kind = rk8 ) djn real ( kind = rk8 ) f real ( kind = rk8 ) f0 real ( kind = rk8 ) f1 integer k integer m integer mt integer n integer nt real ( kind = rk8 ) su real ( kind = rk8 ) x if ( x <= 0.0D+00 ) then bjn = 0.0D+00 djn = 0.0D+00 return end if do nt = 1, 900 mt = int ( 0.5D+00 * log10 ( 6.28D+00 * nt ) & - nt * log10 ( 1.36D+00 * abs ( x ) / nt ) ) if ( 20 < mt ) then exit end if end do m = nt bs = 0.0D+00 f0 = 0.0D+00 f1 = 1.0D-35 su = 0.0D+00 do k = m, 0, -1 f = 2.0D+00 * ( k + 1.0D+00 ) * f1 / x - f0 if ( k <= n + 1 ) then bj(k+1) = f end if if ( k == 2 * int ( k / 2 ) ) then bs = bs + 2.0D+00 * f if ( k /= 0 ) then su = su + ( -1.0D+00 ) ** ( k / 2 ) * f / k end if end if f0 = f1 f1 = f end do do k = 0, n + 1 bj(k+1) = bj(k+1) / ( bs - f ) end do bjn = bj(n+1) djn = - bj(n+2) + n * bj(n+1) / x return end subroutine jn_zeros ( n, nt, rj0 ) !*****************************************************************************80 ! !! jn_zeros() computes the zeros of a Bessel function Jn(x). ! ! Licensing: ! ! This routine is copyrighted by Shanjie Zhang and Jianming Jin. However, ! they give permission to incorporate this routine into a user program ! provided that the copyright is acknowledged. ! ! Modified: ! ! 28 July 2012 ! ! Author: ! ! Original Fortran77 version by Shanjie Zhang, Jianming Jin. ! This version by John Burkardt. ! ! Reference: ! ! Shanjie Zhang, Jianming Jin, ! Computation of Special Functions, ! Wiley, 1996, ! ISBN: 0-471-11963-6, ! LC: QA351.C45. ! ! Input: ! ! integer N: the order of the Bessel functions. ! ! integer NT: the number of zeros. ! ! Output: ! ! real ( kind = rk8 ) RJ0(NT): the first NT zeros of Jn(x). ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer nt real ( kind = rk8 ) bjn real ( kind = rk8 ) djn integer l integer n real ( kind = rk8 ) n_r8 real ( kind = rk8 ) rj0(nt) real ( kind = rk8 ) x real ( kind = rk8 ) x0 n_r8 = real ( n, kind = rk8 ) if ( n <= 20 ) then x = 2.82141D+00 + 1.15859D+00 * n_r8 else x = n_r8 + 1.85576D+00 * n_r8 ** 0.33333D+00 & + 1.03315D+00 / n_r8 ** 0.33333D+00 end if l = 0 do x0 = x call jyndd ( n, x, bjn, djn ) x = x - bjn / djn if ( 1.0D-09 < abs ( x - x0 ) ) then cycle end if l = l + 1 rj0(l) = x x = x + 3.1416D+00 + ( 0.0972D+00 + 0.0679D+00 * n_r8 & - 0.000354D+00 * n_r8 ** 2 ) / l if ( nt <= l ) then exit end if end do return end